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Abstract

Violations of the second law of thermodynamics often occur unde-
tected in chemical reaction networks, leading to inaccuracy of the model.
Beard et al. have given necessary and su�cient conditions for determining
thermodynamic feasibility of flux vectors based on cycles of an oriented
matroid derived from a reaction network’s stoichiometric matrix. Their
theorem implies an algorithm that requires computing all cycles of the ori-
ented matroid, of which we show there are sometimes exponentially many.
Such an algorithm would thus run in exponential time. We extend the
ideas of Beard et al.to find a polynomial time algorithm for checking ther-
modynamic feasibility of a reaction network. Rather than relying on cycle
computation, our algorithm instead depends on interior point methods for
linear programming, which run in polynomial time in the worst case, and
at most sub-linear time on average. As linear programming methods con-
tinue to improve, so will the e�ciency of our algorithm. Of independent
interest, we demonstrate several nice theorems for cycle computation.
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1 Introduction

Chemical reaction networks are a fundamental modelling tool in a variety of sci-
entific disciplines. Though the name suggests a restriction to chemistry, chemi-
cal reaction networks can be used to analyze processes as diverse as the body’s
immune response to HIV[10], analysis of a genome[9], and finding the optimal
material with which to build an airplane[4].

In order to understand and model specific biological process, new mathemat-
ical tools must be discovered or added onto. Some of the mathematical topics
we conducted research on were oriented matroids and computation of their cy-
cles, linear programming, and new definitions and theorems that apply to the
thermodynamics of chemical reaction networks.
Chemical reaction networks can consist of several consecutive reactions that
may or may not be elementary consecutive reactions that are used to represent
biological reactions. Chemical reaction networks can also be applied to synthetic
reactions meaning that the paper can be applied to almost any set of chemical
reaction networks. The implications of this is that our findings not only apply
to purely biochemistry applications, but they are also of some use to the pure
chemistry field.
The notion of chemical reaction networks is similar to the mathematical concept
of reaction graph. Reaction graphs are used to represent the transformations
of reaction species. Each transformation of a specific reaction specie is unique.
The reaction graphs can be used to depict a visual representation of the reaction
mechanism or a sequence of synthetic reactions. While our focus in this paper
is not to create the reaction graphs, but to study the underlying thermodynam-
ics of a given chemical reaction network. More specifically whether or not the
system’s thermodynamics are feasible or unfeasible.

2 Background

Chemistry Defintions: A simple case that we study is the scenario where
there are three species. For example we have species A, B, and C.

For the above picture we consider C to be an intermediate. An intermediate is
a species that is produced and then consumed. We consider species A and B to
be terminal because they are not intermediates.
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One concept of chemistry that plays a key role in the success of determining
the feasibility of a chemical reaction network is the law of mass action. The
law of mass action is a mathematical model that stemmed from the research of
Cato M. Guldberg and Peter Waage. The model allows for the explanation and
prediction of phenomena in chemistry. The phenomena that we are interested in
studying by law of mass action are the behaviors of homogeneous mixtures that
exhibit dynamic equilibrium(s). Homogeneous implies that the solution must
be well-stirred. In short in able to study various chemical reaction networks we
must know some information about the system that we are studying.
Thermodynamics We are particularly concerned with the 2nd law of ther-
modyanamics, which states that energy can neither be created, nor can it be
destroyed. Two important implications that apply to biochemical reactions are
as follows:

1. Spontaneous chemical reactions increase the disorder in the universe. We
know that energy is never lost, created or destroyed, only transformed,
therefore energy is lost in the form of heat.

2. Spontaneous processes will proceed to a state with the least potential
energy.

In essence the impact that these implications have on biochemical processes is
that a feasible and closed system will go to a state with the least potential en-
ergy without external influences.

Properties of S Matrix, or Network Structure:

1. A stoichiometric matrix is an M-by-R matrix, where M equals the total
number of species in a model, and R equals the total number of reactions in
a model. Each row corresponds to a species, and each column corresponds
to a reaction.

2. The matrix indicates which species and reactions are involved as reactants
and products.

3. Reactants appear as negative values.

4. Products appear as positive values.

5. All other locations in the matrix contain a 0.

The null space of an m ⇥ n matrix A, denoted Null A, is the set of all
solutions to the homogeneous equation Ax = 0. Written in set notation, we
have

Null A = {x : x 2 R

nand Ax=0}

If ⇠ is a subspace of Rn, a matroid M is defined as follows. A “vector” of
M is a sign pattern of the form sgn(�) for some non-zero vector � 2 ⇠. The set
of all vectors of M is denoted V . A “cycle” of M is a member of V which has
minimal support.
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A sign pattern ↵ is an n-tuple, ↵ = (↵1,↵2, . . . ,↵n) each of whose entries is
taken from the set {+,�, 0}. A signed support of a sign pattern ↵ is the pair
(↵+

,↵

�). Minimal support occurs if �
i

2 V and there is no �

j

2 V , i 6= j,
such that the signed support of �

j

is a proper subset of the signed support of �i.

Circuit Axioms:

Set of cycles of M is denoted C

1. ; /2 C

2. If ↵ 2 C then its negative �↵ 2 C or C = �C

3. For all ↵,� 2 C , if ↵ ✓ �, then ↵ = � or ↵ = ��

4. Suppose ↵,� 2 C , ↵ 6= � and � 2 ↵

+ \ �

� there is a � 2 C such that

�

+ ✓ (↵+ [ �

+)\{�}

�

� ✓ (↵� [ �

�)\{�}

The next thing is to check that a the collection of signed co-cycles M ⇤ satisfies
exactly the same set of axioms stated above. While we don’t exploit this prop-
erty in our paper, it could well be a potential avenue in the future. Naturally the
concept of the dual oriented matroid arises. More specifically the dual matroid
M ⇤ is obtained from the orthogonal complement of the subspace ⇠ 2 R

n which
is denoted as ⇠

?. In other words (M (⇠))⇤ = M (⇠?), the previous statement
may be hard to picture, since it occurs in a high-dimensional space. In order
for this to be obvious we need to state an important orthogonality property for
oriented matroids:

Definition 1. (?) If ↵ 2 C is a cycle and � 2 C ⇤ is a cocycle of an oriented
matroid with (↵+ \ �

+)[ (↵� \ �

�) 6= ;, then also (↵+ \ �

�)\ (↵� \ �

+) 6= ;,
and conversely.

A ”vector” of an oriented matroid is any composition of cycles. On the other
hand a ”covector” is a vector of the dual oriented matroid, more specifically any
composition of cocycles. The notation would work in the following manner, the
“vectors” of M ⇤ are referred to as the “co-vectors” of M . The set of all “co-
vectors“ are denoted as V ⇤. Naturally it follows that the “cycles“ of M ⇤ are
referred to as the “co-cycles” of M , and the set of co-cycles are denoted C ⇤.
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Theorem 1. A flux vector J is feasible according to steady state mass balance
and the thermodynamic constraint if and only if

1. S·J = 0 and

2. sgn(J̃) is orthogonal to � for each � 2 C ⇤
.

If J
j

is allowed to be 0, even if �µ

j

6= 0, then condition (2) is replaced by
(20):

2. |h�, sgn(J̃)i| < |h�, �i| for each � 2 C ⇤
.

If a flux vector J satisfies conditions (1) and (2), we will say that J is strictly
feasible, while if it only satisfies (1) and the relaxed condition (2’), we will say
that J is T-feasible, or simply feasible.

Definition 2. Vectors v and w are sign orthogonal if either of the following is
true:

1. The support of v and support of w contain no common elements.

2. There exists an index at which v and w have the same nonzero sign, and
another index at which they have opposite sign.

3 Oriented Matroids

3.1 Cycle Computation

1. Obtain Stoichiometric Matrix from Chemical Reaction Network

Reaction 1: A ! B

Reaction 2: B ! C

Reaction 3: C ! A

Reaction 4: C ! D

Reaction 5: D ! B

Reaction 6: 0 ! A

Reaction 7: B ! 0

Slightly abusing the notation reaction 6 and reaction 7 denote the cases
where there are external fluxes that transport A into the system, and B
out of the system.

The chemical reactions above yield the following Stoichiometric Matrix

S =

2

664

�1 0 +1 0 0 +1 0
+1 �1 0 0 +1 0 �1
0 +1 �1 �1 0 0 0
0 0 0 +1 �1 0 0

3

775
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Now note that the last two columns correspond to the external fluxes of
the system. Since we’re only interested in the internal reactions we omit
the last two columns, and obtain e

S.

e
S =

2

664

�1 0 +1 0 0
+1 �1 0 0 +1
0 +1 �1 �1 0
0 0 0 +1 �1

3

775

2. Compute Nullspace of Stoichiometric Matrix
The nullspace of a matrix is found by setting e

Sx = 0 where x is a n ⇥ 1
vector. We find that a basis for e

S is as follows:

2

66664

1
1
1
0
0

3

77775
x1 +

2

66664

0
1
0
1
1

3

77775
x2

3. Compute Signed Vectors of Basis

↵1 = sgn

� ⇥
1 1 1 0 0

⇤ �
=

⇥
+ + + 0 0

⇤

↵2 = sgn

� ⇥
0 1 0 1 1

⇤ �
=

⇥
0 + 0 + +

⇤

C=

⇢⇥
+ + + 0 0

⇤
,
⇥
0 + 0 + +

⇤�

Now let it be noted that ↵1 and ↵2 belong to C , which is the set of cycles
of the Matroid, M . We are allowed to do this since we know that cycles
computed from basis vectors have minimal support.

4. Obtain cycles from the signed Vectors of Basis vectors
Now taking ↵1 and ↵2 and we realize that they do not have any sign
di↵erences, therefore we can not compute more cycles. However, given
the following contrived basis:

2

66664

1
1
1
0
0

3

77775
x1 +

2

66664

0
�1
0
1
1

3

77775
x2

with the following sign vectors and cycles
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�1 = sgn

� ⇥
1 1 1 0 0

⇤ �
=

⇥
+ + + 0 0

⇤

�2 = sgn

� ⇥
0 �1 0 1 1

⇤ �
=

⇥
0 � 0 + +

⇤

C=

⇢⇥
+ + + 0 0

⇤
,
⇥
0 � 0 + +

⇤�

We now have that there is a disagreement between �1 and �2 at the 2nd

position. A disagreement is defined as a sign di↵erence in the j

th element
between two vectors of C . In order to resolve a disagreement in the j

th

position between two vectors, a linear combination of the two vectors must
be taken such that c1v1,j + c2v2,j = 0 for the j

th element.
Therfore, c1 = 1 and c2 = 1, and

v1 =
⇥
1 1 1 0 0

⇤
v2 =

⇥
0 �1 0 1 1

⇤

c1v1 + c2v2 =
⇥
1 0 1 1 1

⇤

v3 =
⇥
1 0 1 1 1

⇤

�3 = sgn

⇥
1 0 1 1 1

⇤
=

⇥
+ 0 + + +

⇤

C =

⇢⇥
+ + + 0 0

⇤
,

⇥
0 � 0 + +

⇤
,

⇥
+ 0 + + +

⇤�

Note that the set C is now complete.

5. Repeat while checking that the cycles obtained are minimally supported
Now while the previous two examples terminated before this step, this step
would be done for Chemical Reaction Networks who have a stochiometric
matrix of internal reactions with a nullspace of dimension greater or equal
to 3.

3.2 Improvements to Cycle Computation

There are several manners in which one could implement to improve the afore-
mentioned algorithm. One manner in which the algorithm could be made more
e�ciently would be by allowing the presence of an all positive signed vector to
terminate the algorithm since this would imply that the system is not thermo-
dynamically feasible. Another stopping criteria that could also be implemented
is if the all minus vector is observed.

3.3 Row-Reduced Echelon Form Basis Approach to Cycle
Computation in Oriented Matroids

We use Gauss-Jordan elimination to find a basis in row-reduced echelon form
for the nullspace of the stoichiometric matrix. This basis will assist us both
in proving that an oriented matroid can contain exponentially many cycles in
the worst case and later as a step in our algorithm. Note that Gauss-Jordan
elimination runs in O(nk2) time for a k-by-n matrix.
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Let nullspace ⇠ ✓ Rn be a k-dimensional subspace and ⌘ is the nullspace of
the stoichiometric matrix. Then let B = {v1, ..., vk} be a basis for ⇠ such that

0

B@
v1
...
v

k

1

CA

is in Reduced Row Echelon form. We will use this basis B in the following three
proofs.

Theorem 2. If v 2 B, then sgn(v) is a cycle of the oriented matroid corre-
sponding to the nullspace.

Proof. Let v

i

2 B and let ↵ = sgn(v
i

). Assume for a contradiction that ↵ is
not a cycle. Then there exists nonzero � 2 V such that �+ ✓ ↵

+
i

and �

� ✓ ↵

�
i

and � 6= ↵. By the definition of V , there exists w 2 ⇠ such that sgn(w) =
�. We have supp(w) ⇢ supp(v

i

) and we can write w as a linear combination
c1v1 + ...+ c

k

v

k

of the basis vectors in B. Assume for a contradiction that there
exists c

j

6= 0, j 6= i. There exists an index ` at which v

j

has a leading one (in
particular, the first non-zero index of v

j

). Then for all m 6= j, we have v
m,`

= 0.
So w

`

= c

j

6= 0. But v
i,`

= 0. Then supp(w) 6⇢ supp(v
i

), a contradiction. Thus,
for all j 6= i, we have c

j

= 0. Therefore w = c

i

v

i

. So sgn(w) = ± sgn(v
i

),
i.e. � = ±↵. But � is nonzero and �

+ ✓ ↵

+ and �

� ✓ ↵

�, so � = ↵, a
contradiction. Hence ↵ is a cycle.

Proposition 1. If w is a positive linear combination of two vectors who do not
have a disagreement, then sgn(w) is not a cycle.

Proof. Let nonzero v1, v2 2 ⇠ have no disagreements, and let ↵ = sgn(v1), � =
sgn(v2). Let w = c1v1 + c2v2 for c1, c2 � 0, and � = sgn(w). We will show that
the signed support of ↵ is strictly contained in the signed support of �. For all
i 2 ↵

+, we have we have �

i

= ↵

i

, since �

i

= 0 or �
i

is positive. Likewise, for all
j 2 ↵

�, we have we have �

i

= ↵

i

. Since � is nonzero, we have � = ↵ + � 6= ↵.
So the signed support of ↵ is strictly contained in the signed support of �, and
hence � does not have minimal signed support, i.e. � is not a cycle.

Theorem 3. If w is the resulting vector from a positive pairwise linear combi-
nation that resolves a disagreement between basis vectors from B, then sgn(w)
is a cycle.

Proof. Consider basis vectors v
i

, v
j

2 B having a disagreement at index `. Let
c

i

= |v
j,`

| and c

j

= |v
i,`

|. Then let w = c

i

v

i

+ c

j

v

j

. So w

`

= 0. Let � = sgn(w).
Assume for a contradiction that � is not a cycle. Then there exists nonzero
� 2 V such that �

+ ✓ �

+ and �

� ✓ �

� and � 6= �. By the definition of V ,
there exists u 2 ⇠ such that sgn(u) = �. We have supp(u) ⇢ supp(w) and, since
B is a basis for ⇠, we have u = d1v1 + ... + d

k

v

k

. Assume for a contradiction
that there exists d

p

6= 0 for p 6= i, j. There exists an index r at which v

p

has
a leading one. Then, for all m 6= p, we have v

m,r

= 0. So u

r

= d

p

6= 0. But
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v

i,p

= 0 and v

j,p

= 0. So w

p

= c

i

v

i,p

+ c

j

v

j,p

= 0. Then supp(u) 6⇢ supp(w), a
contradiction. Thus, for all p 6= i, j, we have d

p

= 0. Therefore u = d

i

v

i

+ d

j

v

j

.
Since supp(u) ⇢ supp(w), u

`

= 0. Then di
dj

= ci
cj
. Thus u = c

0
w. So sgn(u) =

± sgn(w), i.e. � = ±�. But � is nonzero and �

+ ✓ �

+ and �

� ✓ �

�, so � = �,
a contradiction. Hence � is a cycle.

Remark. Note that n-wise linear combinations of reduced row echelon form basis
vectors do not always result in vectors whose sign vectors are cycles, even if the
combination resolves a series of disagreements. Consider the following reduced
row echelon basis B:

B = {v1, v2, v3} = {(1, 0, 0, 1, 1), (0, 1, 0, 0,�1), (0, 0, 1,�2, 1)}
Each pairwise combination of the basis vectors contains a disagreement, and

we can resolve these disagreements with the following linear combinations:

w1 = v1 + v2 = (1, 1, 0, 1, 0)

w2 = 2v1 + v3 = (2, 0, 1, 0, 3)

w3 = v2 + v3 = (0, 1, 1,�2, 0)

Note that there is a disagreement between v3 and w1 at index 4, and a dis-
agreement between v2 and w2 at index 5. We resolve these disagreements as
follows:

w4 = v3 + 2w1 = (2, 2, 1, 0, 1)

w5 = 3v2 + w2 = (2, 3, 1, 0, 0)

We find that sgn(w4) is not a cycle, because the signed support of w5 is a
subset of the signed support of w4. Further, we can discern that sgn(w5) is a
cycle, since it is impossible to generate a triple-wise combination of basis vectors
with smaller signed support (a consequence of the leading ones in each basis
vector), and none of the basis vectors or pairwise combinations computed above
have a signed support contained in the signed support of w4. We have not yet
discovered an e�cient method for determining which n-wise linear combinations
of basis vectors from B produce cycles, and we are left checking for minimality
by comparison to other signed vectors in the matroid. In many cases, this means
comparing exponentially many signed vectors to one another.

3.4 Oriented Matroids Can Have an Exponential Number
of Cycles

Even if we were to find a polynomial time algorithm for finding each cycle of
the oriented matroid stemming from ⇠, the complexity of the algorithm would
still depend on the number of cycles. We present a family of nullspaces whose
corresponding oriented matroids contain exponentially many cycles, guarantee-
ing exponential complexity in the worst case of such an algorithm. Here we
give examples of nullspaces with dimension k = 3 and k = 4, which contain
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2(23�1) and 2(24�1) cycles respectively. We then give a proof that this family
of nullspaces extends to a general dimension k.

N3 =

0

@
v1

v2

v3

1

A =

0

@
I3

1 1 0
�1 0 1
0 �1 �1

1

A

N4 =

0

BB@

v1

v2

v3

v4

1

CCA =

0

BB@I4

1 1 1 0 0 0
�1 0 0 1 1 0
0 �1 0 �1 0 1
0 0 �1 0 �1 �1

1

CCA

Suppose ⇠ ⇢ Rn is a k-dimensional subspace whose basis vectors {v1, . . . , vk}
are the rows of a matrix N

k

with the following structure, which we denote (?):

1. N is in row reduced echelon form, with I

k

making up the first k columns.

2. Let v
i

and v

j

be distinct row vectors with i < j. There exists a column of
n

k

whose entries are zero except for a 1 in row i and a -1 in row j.

3. Except for the first k columns, every column has the structure described
in criterion 2.

Note that each row vector disagrees with every other row vector once, and at a
unique entry.

Remark. In this nullspace, we need not concern ourselves with negative coe�-
cients of basis vectors while computing cycles. If we use some positive and some
negative coe�cients in a linear combination, the resulting vector will never be
a cycle, since the support of the resulting vector will contain the support of
an all positive or all negative coe�cient linear combination. If we use all neg-
ative coe�cients, the resulting vector is the negative of an all positive linear
combination, and, if it is a cycle, will already have been accounted for.

Lemma 1. Suppose the conditions of (?), and let w = c1va1 + . . .+ c

m

v

am for
c

i

> 0. If there exists a c

i

= p 6= 1, then w is not a cycle or every c

i

= p.

Proof. Suppose that there exists a c

j

= p 6= 1. Suppose further that w is a cycle.
Let u = w � v

j

. Then u and v

j

have a disagreement due to Proposition 1. In
fact, we see that u and v

j

have exactly m� 1 disagreements, one corresponding
to each vector summing to make u, a consequence of the structure of N . For
every index ` at which u and v

j

do not have a disagreement, either u

`

= 0 or
v

j,`

= 0. So w

`

is only zero when u

`

= v

j,`

= 0. Thus we can only send at most
m-1 previous nonzero entries of u to zero with the addition of v

j

. The binary
linear combination x of v

a1 , . . . , vam resolves all m-1 of these disagreements. To
ensure that supp(u) 6� supp(x), we must resolve every disagreement between u

and v

j

. Let ` be an entry at which u and v

j

have a disagreement. There is only
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one basis vector v
ab 6= v

j

with a nonzero value at `. Then v

ab is necessarily in
{v

a1 , . . . vam}\{v
i

}. In order to resolve the disagreement between u and v

j

at `,
we must have c

b

= p. Since each of the m � 1 disagreements corresponds to a
distinct vector in {v

a1 , . . . vam}\{v
i

}, every c

i

= p.

Proposition 2. Suppose the conditions of (?). If w = c1v1 + . . . + c

k

v

k

for
c

i

2 {0, 1} and v

i

a row vector of N
k

, then sgn(w) is a cycle.

Proof. We will show this using strong induction on the number of nonzero c

i

’s.
Due to Lemma 1, we need only concern ourselves with binary linear combina-
tions of vectors. Let ⇣ be the set of binary linear combinations of v1, . . . , vk.

Base case: Suppose w = v

a1 . Since N is in reduced row echelon form, we
know that w is a cycle due to Theorem 2.

Inductive case: Suppose every nonzero u = c1va1 + . . .+ c

`

v

a` for c
i

2 {0, 1}
and distinct v

ai is a cycle. We will show that, if `+1  n, then w

`+1 = w

`

+v

a`+1

is a cycle. We do so by checking that no vector x 2 ⇣ has supp(x) ✓ supp(w
`+1).

Suppose `+1  n and let w
`+1 = w

`

+v

a`+1 for distinct v
ai . Every vector x 2 ⇣

(with the exception of w
`+1) falls into one of two cases.

1. Suppose that x can be written as a linear combination of the same vectors
that make up w

`+1. There exists at least one index m at which v

a`+1 and
x have a disagreement. Then w

`+1,m = 0 and x

m

6= 0. Thus we have
supp(w

`+1) 6◆ supp(x).

2. Suppose x can only be expressed as a linear combination of basis vectors
that includes at least one vector v

j

not used to make up w

`+1. We know
that v

j

has a leading one at some entry m. Then x

m

= 1 and w

`+1,m = 0,
so supp(w

`+1) 6◆supp(x).

Therefore w has minimal signed support, and is thus a cycle.

If we restrict to binary linear combinations, there are 2k � 1 nonzero w’s.
Hence, we know that N corresponds to an oriented matroid containing at least
2k � 1 cycles (in fact, the matroid contains 2(2k � 1) cycles), which is exponen-
tially many.

We note that these subspaces are not the only ones corresponding to expo-
nentially many cycles in the oriented matroid, rather they are a simple example
with which to work. Because such a family of subspaces exists, any algorithm
dependent on computing all the cycles will run in at least exponential time
in the worst case. Whether or not such an algorithm will run in exponential
time on average is an open question. If we want to find an algorithm that
runs in polynomial time in the worst case, it is clear that we must avoid cycle
computation.
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4 Construction of a Non-Orthogonal Vector to
Determine Thermodynamic Feasibility

Earlier, we defined what it means for two vectors to be sign orthogonal. If we
assume that the flux vector is a positive vector (strongly thermodynamically
feasible[8]), then we can narrow the criteria for when a vector is orthogonal
to the flux vector. As the support of the flux vector will be {1, . . . , n}, we
know that the first condition for sign orthogonality will only hold for the zero
vector when compared to the flux vector. It is forbidden for the zero vector
to be a cycle, so we ignore this case. As such, we focus solely on determining
whether every cycle satisfies the second orthogonality criterion (Theorem 1) in
comparison with the flux vector.

In fact, every nonzero vector is sign orthogonal to the all positive vector ex-
cept those that have all nonnegative or all nonpositive entries (and are nonzero).
If a nonpositive vector is present in a vectorspace, then its negative, a nonneg-
ative vector, is present. Thus, to determine whether there exists a strongly
thermodynamically feasible flux vector for a particular chemical reaction net-
work, we need only check whether or not a nonnegative nonzero vector exists in
the nullspace of the network’s stoichiometric matrix.

4.1 Deriving a System of Inequalities

To accomplish this, we return to the row reduced echelon form basis for our
nullspace ⇠. Consider the following example in which the row vectors of N are
a basis for ⇠:

N =

0

@
v1

v2

v3

1

A =

0

@
1 0 0 �3 �2
0 1 0 �2 4
0 0 1 1 �1

1

A

Suppose there exists a nonzero nonnegative vector w 2 N . Then w is a linear
combination c1v1 + c2v2 + c3v3 of basis vectors v1, v2, and v3. To ensure that
the first three entries of w are nonnegative, we restrict c1, c2, c3 � 0. To make
sure the fourth entry of w is nonnegative, we introduce the constraint:

�3c1 � 2c2 + c3 � 0.
To keep the fifth entry nonnegative, we introduce:

�2c1 + 4c2 � c3 � 0.
One nonzero solution to this system of inequalities is c1 = 0, c2 = 1, c3 = 3,
indicating that a nonzero nonnegative vector in ⇠ exists, and that the system
corresponding to this nullspace is thermodynamically infeasible.

In general, we can construct a set of constraints based on the columns of
the matrix describing the nullspace as we did in the above example. This con-
struction results in k nonnegativity restrictions on the coe�cients c

i

and n� k

constraints of the following form, where the a

i,j

’s are taken from the columns
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of N not containing leading 1s:

a1,1c1 + . . .+ a

k,1ck � 0

a1,2c1 + . . .+ a

k,2ck � 0

...
...

a1,n�k

c1 + . . .+ a

k,n�k

c

k

� 0

Proposition 3. A chemical reaction network is strongly thermodynamically
feasible if and only if there exists no feasible nonzero solution to this system of
inequalities.

4.2 Linear Programming

Using linear programming, we can determine whether a solution in the positive
orthant exists for any set of linear inequalities. First, we must alter our sys-
tem of constraints slightly and introduce an objective function based on a new
nonnegative variable c0.

Let Z = �c0 and let our system of constraints be as follows, where the a
i,j

’s
and c

i

’s are as before:

�c0 � a1,1c1 � . . .� a

k,1ck  0

�c0 � a1,2c1 � . . .� a

k,2ck  0

...
...

�c0 � a1,n�k

c1 � . . .� a

k,n�k

c

k

 0

Our original system of inequalities has a feasible solution if and only if we can
maximize Z to 0 [7]. However, note that c1 = . . . = c

k

= 0 is always a feasbile
solution to this set of inequalities, causing Z to always maximize to 0, but we
require a nonzero solution.

4.3 Exclusion of the Trivial Solution

As stated above, our algorithm returns a useless solution, so we must find a way
to exclude the all zero result as a feasible solution. We can model our system as
a system of halfplanes in k-dimension, where the set of feasible solutions is the
largest polytope contained in the intersection of every halfplane. Each halfplane
is bounded by a boundary hyperplane, and each of these hyperplanes passes
through the origin. One consequence of this is that the origin (corresponding to
the all zero solution) is always in the feasible set, which we have already noted.
A related consequence is that, if the feasible set is nontrivial, the polytope is
unbounded in some direction in the positive orthant.

Suppose P is a cross-section of the positive orthant intersecting every axis at
a nonzero value. Let F be the intersection of P and the feasible polytope. If the
feasible set is nontrivial, then P will intersect the feasible polytope nontrivially.
Otherwise the intersection will be empty.
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Proposition 4. A chemical reaction network is strongly thermodynamically
feasible if and only if F is nonempty.

Suppose without loss of generality that P is the hyperplane c1+ . . .+c

k

= 1.
We solve for c1 = 1 � c2 � . . . � c

k

, which we use to rewrite our system of
inequalities as follows:

�c0 + (a1,1 � a2,1)c2 + . . .+ (a1,1 � a

k,1)ck  a1,1

�c0 + (a1,1 � a2,2)c2 + . . .+ (a1,1 � a

k,2)ck  a1,1

...
...

�c0 + (a1,1 � a2,n�k

)c2 + . . .+ (a1,1 � a

k,n�k

)c
k

 a1,1

c2 + . . .+ c

k

 1.

We then use interior point methods to solve the linear programming problem
of maximizing Z = �c0.

5 Conclusions

We use an interior point method proposed by Anstreicher [1], which runs in

O( k

3

log(k)n) time in the worst case. It is known that interior point methods run

in at most O(
p
klog(k)) on average[2]. Computational evidence suggests that

this is not a strict upper bound, and we hope to soon see an improved average
run time analysis.

We hope to further reduce the upper bound on our algorithm by proposing
constraints on which stoichiometric matrices might reasonable arise from real
life chemical reaction networks. One way to do so would be to restrict the orig-
inal chemical reaction network to unimolecular and bimolecular reactions. We
suggest that termolecular reactions be excluded because this type of elementary
reaction is uncommon. For large reaction networks, this restriction would create
a sparse stoichiometric matrix, which we believe would speed up the average run
time not only of the linear programming subproblem, but also of the nullspace
computation and Gauss-Jordan elimination. In a sparse stoichiometric matrix,
we also suspect that the dimension of the nullspace will be much smaller than
the number of reactions, which will further serve to reduce the run time of our
algorithm.

Once identifying whether there are unique subspaces that correspond to
these elementary reactions, a mixed system of elementary reactions could be
studied to see if they correspond to specific reactions.

We have found a case in which an oriented matroid contains exponentially
many cycles, but we do not know whether oriented matroids contain exponen-
tially many cycles on average. We would like to find conditions on a subspace
to quickly determine when its corresponding oriented matroid contains expo-
nentially many cycles or polynomially many cycles. We suspect that any such
conditions will depend on the number of disagreements between basis vectors.
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