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Chemical Reaction Networks



Thermodynamic Analysis

Second Law of Thermodynamics

In any closed system, the entropy of the system will either remain
constant or increase.

Question
Can we quickly determine when a chemical reaction network is
thermodynamically feasible?
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Previous Work

Algorithm (Beard et al., 2004)

Determines if a chemical reaction network is thermodynamically
feasible for a given set of reaction rates.

I Step 1: Form stoichiometric matrix from reaction network.

I Step 2: Compute nullspace of stoichiometric matrix.

I Step 3: Compute signed vectors of nullspace.

I Step 4: Check orthogonality between flux vector and “cycles”.



What is a cycle?

Signed Support of a Vector

The positive/negative support of a vector is the set of indices at
which the vector has a positive/negative value.

v = (1,−1, 0, 1, 1,−1) v+ = {1, 4, 5}, v− = {2, 6}

Cycle

A cycle is a signed vector with minimal signed support.

w = (1,−1, 0, 0, 0, 0) w+ = {1}, w− = {2}
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Cycle Axioms

1. If α is a cycle, then −α is a cycle.

2. If α and β are cyles, and the signed support of α is contained
in the signed support of β, then α = β or α = −β.

3. Suppose α and β are cycles such that α 6= −β, and i is and
index with αi = + and βi = −. Then there exists a cycle γ
with γ+ ⊆ (α+ ∪ β+) and γ− ⊆ (α− ∪ β−).



Row-Reduced Echelon Basis

Let ξ ⊆ Rn be a k-dimensional subspace. Then let B = {v1, ..., vk}
be a basis for ξ such that  v1

...
vk


is in Reduced Row Echelon form.

Ex.  1 0 0 −3 −2
0 1 0 −2 4
0 0 1 1 −1





Computing Cycles

Theorem
The signed vector of every basis vector is a cycle.

Definitions
Vectors v and w have a disagreement if there exists an index `
such that v` and w` have opposite signs, i.e. one is negative and
one is positive.

We say that a resolution vector u is a linear combination of v and
w such that u` = 0.

v = (1, 0, -3), w = (0, 1, 4) 4v + 3w = (4, 3, 0)

Theorem
The signed vector of any pairwise resolution of basis vectors is a
cycle.
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Computing Cycles

Ex.

N =

 v1
v2
v3

 =

 1 0 0 1 1 0
0 1 0 −1 0 1
0 0 1 0 −1 −1



Then (+, 0, 0, +, +, 0), (0, +, 0, -, 0, +), and (0, 0, +, 0, -, -)
are cycles.

And (+, +, 0, 0, +, +), (+, 0, +, +, 0, -), and (0, +, +, -, -, 0)
are cycles.

But sgn(v1 + v2 + v3) = (+, +, +, 0, 0, 0) is also a cycle.

Bad News
Depending on the number of disagreements between basis vectors,
we could have 2k − 1 independent cycles in C .
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Exponential Condition

Sign Orthogonality

Two sign vectors are orthogonal if there is an index i at which they
have the same (nonzero) sign and another index j at which they
have opposite signs.

(+,+, 0) ⊥ (+,−,−) (+,+, 0) 6⊥ (+, 0,−)

Orthogonality to sgn(Flux Vector)

There exists a cycle not orthogonal to the signed vector of the flux
vector if there is α ∈ N such that each entry of α is nonnegative.

(1, 1, 1) 6⊥ (1, 0, 1)
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Determining Orthogonality

Ex.  1 0 0 −3 −2
0 1 0 −2 4
0 0 1 1 −1



Suppose there exists w such that all entries in w are nonnegative.

Then w = c1v1 + c2v2 + c3v3.

So c3 ≥ 3c1 + 2c2 and 4c2 ≥ 2c1 + c3.
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Constraint Analysis

We can have up to n inequalities, where n is the number of
reactions.

xi ≥ 0
a1,1x1 + . . .+ a1,kxk ≤ b1
a2,1x1 + . . .+ a2,kxk ≤ b2

...
an−k,1x1 + . . .+ an−k,kxk ≤ bn−k



Special Properties

I All boundary hyperplanes intersect at the origin.

I Origin is always feasible.

I Every nontrivial feasible region is unbounded.



Bounding the System in 2D

Take any line with positive x and y intercepts.

I The intersection of this line and the feasible region is bounded
and does not contain the origin.

I The intersection is nonempty if and only if a feasible region
exists.
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Bounding the System in General

Suppose x1 + . . .+ xk = 1.

Then x1 = 1− x2 − . . .− xk .
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Linear Programming

Finds an optimal solution to a linear function based on a set of
linear constraints.
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Objective function maximize Z = ?

Constraints: Ax ≤ b, x ≥ 0
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Linear Programming

Objective function maximize Z = −x0

Constraints: Ax̂ ≤ b, x ≥ 0

−x0 + a1,1x1 + . . .+ a1,kxk ≤ b1
−x0 + a2,1x1 + . . .+ a2,kxk ≤ b2

...
−x0 + an−k+1,1x1 + . . .+ an−k+1,kxk ≤ bn−k+1

Our original system of constraints has a feasible region if and only
if Z = −x0 maximizes to 0.



Polynomial Time?

Anstreicher’s interior point method (1999) runs in polynomial time

in the worst case: O( k3

log(k)n).

Interior point algorithms are at most O(
√
klog(k)) on average.
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