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Introduction

I Chemical reactions can be characterized as equations.
These equations include variable or species, rate
constants, and direction.

I These interactions are mathematically represented by
mass-action kinetics.

I Def: Mass action kinetics says that the rate of a chemical
reaction is proportional to the concentration of the
reacting species

I A + B
ki→ C ,

C
kj→ D

I Immunology is a group, or a network, of chemical
reactions that describe certain interactions between cells.
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Background

I Immunology is the study of the immune system which is
our natural defense mechanism against pathogen.

I Pathogens can come in contact with our cells in two
ways: extracellularly and intracellularly.

I We have two different immune cells that response to
these two pathogen types: B cells and T cells
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Motivation for study

Figure: Immune System Network made by Fouchet and Regeos



Motivation for study

I Bistability, in this case, indicates tolerance of the immune
system. Tolerance is a state of unresponsiveness to a
substance that has the capacity to elict an immune
response.

I I want to find the cause of bistability in this network.

I My approach is analyzing subnetworks of the system
previously shown.

I Joshi and Shiu, 2013: A network with inflows/outflows
admits multiple steady states if and only if some
embedded subnetwork admits multiple steady states.
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1st approach: Case studies

Figure: Case 1: Subnetwork of all APCs and effector T cell
interaction

Figure: Case 2: Subnetwork of all T cell interaction with only
activated APC



1st approach: Case studies

Figure: Case 3: Subnetwork of all T cells interactions with resting
APC

Figure: Case 4: Subnetwork all APCs and only regulatory T cell



Results of case study

I Used CoNtRol, a web-based program that analyzes
networks of chemical reactions. It analysis the network for
the possibiliy of multiple steady states.

I Only Case 3 and Case 4 had the possibility of bistability.
They were the only cases with regulatory T cell and
resting APC interaction.

I Conj: Any immunological subnetwork will be bistable if
there exists a subnetwork with regulatory T cell
interactions.



Results of case study

I Used CoNtRol, a web-based program that analyzes
networks of chemical reactions. It analysis the network for
the possibiliy of multiple steady states.

I Only Case 3 and Case 4 had the possibility of bistability.
They were the only cases with regulatory T cell and
resting APC interaction.

I Conj: Any immunological subnetwork will be bistable if
there exists a subnetwork with regulatory T cell
interactions.



Results of case study

I Used CoNtRol, a web-based program that analyzes
networks of chemical reactions. It analysis the network for
the possibiliy of multiple steady states.

I Only Case 3 and Case 4 had the possibility of bistability.
They were the only cases with regulatory T cell and
resting APC interaction.

I Conj: Any immunological subnetwork will be bistable if
there exists a subnetwork with regulatory T cell
interactions.



Making the equations: Case 4

Figure: Case 4: Subnetwork of Treg on both types of APCs

Resulting system of ODEs:

Ȧ = k + mBD − lA− qAC

Ḃ = lA−mBD

Ċ = r − qAC

Ḋ = qAC −mBD



Solving for steady states: Case 4

I Ċ + Ḋ ⇒ r = mB∗D∗ ⇒ B∗ =
r

mD∗

I Ḃ : lA∗ − r = 0⇒ A∗ =
r

l

I Ċ : r = qAC ∗ ⇒ r = q
r

l
C ∗ ⇒ C ∗ =

l

q

I Ȧ = k − lA− Ḋ ⇒ k − lA∗ = 0⇒ A∗ =
k

l
I k = r must hold to have any real postive steady states.
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I Ċ : r = qAC ∗ ⇒ r = q
r

l
C ∗ ⇒ C ∗ =

l

q
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I Ċ + Ḋ ⇒ r = mB∗D∗ ⇒ B∗ =
r

mD∗
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Theoretical analysis: Case 4

I Usually if such a condition is necessary there must be a
conservation relationship. This means that some
combination of equations add up to become a constant.

I We know:
Ȧ− Ḋ = k − lA = r − lA
Ḃ = lA− r

I Ȧ− Ḋ + Ḃ = 0⇒
constant︷︸︸︷
A∗ −D∗ + B∗ = 0

I B∗ − D∗ = constant
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Graphical representation of meaning

Figure: B∗ as a function of D∗ with A∗,C ∗ fixed



Making the equations: Case 3

Figure: Case 3: Subnetwork of all T cells interactions with resting
APC

Resulting system of ODEs:

Ȧ = k + mAB

Ḃ = p − nB −mAB

Ċ = mAB − oCD

Ḋ = nB − oCD



Solving for steady states: Case 3

I Ȧ⇒ k = mA∗B∗ ⇒ A∗ =
k

mB∗

I Ḃ : p = B∗(mA∗ − n)⇒ B∗ =
p

mA∗ − n
⇒

⇒ B∗ =
pB∗

k − nB∗

I Replacing B with x, we get that the following polynomial
equation for the solution of the steady states of B:
nx2 + (p − k)x = 0

I choose n > 0, then p < k to have a single positive
solution.

I choose n < 0, then k < p to have a single positive
solution.
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Solving for steady states: Case 3

I Ḋ : nB∗ = oC ∗D∗ ⇒ D∗ =
nB∗

oC ∗

I No conservation relationship, used Matlab fsolve function
to solve the system of nonlinear equations to find a
unique solution.

I Only one steady state occured at
(A∗,B∗,C ∗,D∗) = (1.59, 1.25, 0.5, 0.9).
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Wait, did I mess up?

I My Matlab results showed only one unique positive steady
state, but that steady state occurs at a lower value
meaning there is less of a certain species.

I CoNtRol showed that adding in outflows resulted in the
loss bistability of each subnetwork, case 3 and case 4.

I This is in accordance to recent findings in which the
addition of inflows and outflows, however arbitrarily small,
resulted in the loss of bistability in a chemical network.
(Grinfield and Webb, 2009)

I That is why I ignored the outflows, because I would never
be able to find the cause of the bistablity if I included
outflows.
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Discussion

I This result was counterintuitive in the sense that these
types of analysis usually end up with a theoretical proof
that proves your prediction. In this case, it was the
complete opposite.

I I proved any subnetwork that retains biological meaning is
not bistable. There could be other subnetworks that I did
not analyze that cause the bistability, but they wouldn’t
be biological relevant.

I Ultimately, my work validates Fouchet and Regeos’ model
as the most concise and precise way to descibe self vs.
nonself tolerance. This means that all of the interactions
outlined in their model are necessary to include in a
model if further research is done on the subject.



Discussion

I This result was counterintuitive in the sense that these
types of analysis usually end up with a theoretical proof
that proves your prediction. In this case, it was the
complete opposite.

I I proved any subnetwork that retains biological meaning is
not bistable. There could be other subnetworks that I did
not analyze that cause the bistability, but they wouldn’t
be biological relevant.

I Ultimately, my work validates Fouchet and Regeos’ model
as the most concise and precise way to descibe self vs.
nonself tolerance. This means that all of the interactions
outlined in their model are necessary to include in a
model if further research is done on the subject.



Discussion

I This result was counterintuitive in the sense that these
types of analysis usually end up with a theoretical proof
that proves your prediction. In this case, it was the
complete opposite.

I I proved any subnetwork that retains biological meaning is
not bistable. There could be other subnetworks that I did
not analyze that cause the bistability, but they wouldn’t
be biological relevant.

I Ultimately, my work validates Fouchet and Regeos’ model
as the most concise and precise way to descibe self vs.
nonself tolerance. This means that all of the interactions
outlined in their model are necessary to include in a
model if further research is done on the subject.


