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The Ten-Second Version

We present bounds on the numbers of roots of trinomials over finite
fields whose orders are the squares of prime numbers.
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Background: Descartes’ Rule

The number of solutions of sparse polynomials over the reals is
bounded above sharply by Descartes’ Rule.

Theorem (Descartes’ Rule)

A polynomial f (x) ∈ R [x ] with t nonzero terms has at most 2t − 1
real zeros. Furthermore, x(x2 − 1)(x2 − 2) · · · (x2 − (t − 1)) attains
this maximum.

.
The same rule does not hold over finite fields (ex: xq − x over Fq),
so it is necessary to find an alternate rule.
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Background: The Coset Rule

Bi, Cheng, and Rojas (2014) recently proved a rule for
polynomials with t terms over Fq.

The roots appear in multiplicative cosets, whose number and
size are bounded in terms of t and the quantity δ, which is the
gcd of the exponents with q − 1.

δ = gcd(a2, . . . , at , q − 1)
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Existing Results for Trinomials

These are Cheng, Gao, Rojas, and Wang’s previous bounds for
trinomials in Fq with q = pk .

UPPER All k O(q
1
2 ) (follows from coset result)

3|k Ω(q
1
3 ) (by example)

LOWER Other Ω( log log q
log log log q

) unconditionally

Ω( log q
log log q

) assuming GRH
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Our Mission

We set out to find results for a little-explored case, k = 2. Our plan
of attack for achieving this was the following:

1 Obtain raw data on the numbers of roots of trinomials on small
quadratic fields, primarily through computational experiments.

2 Find trinomials with unusually large numbers of roots, to
establish a lower bound on the maximum.

3 Formulate conjectures about upper and lower bounds on the
root count, and, if possible, prove them.
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Summary of Results

1 We completed basic computational surveys of the quadratic
fields of order less than 250,000.

2 We discovered a class of trinomials with δ = 1 having p roots on
all Fp2 , using linear algebra techniques.

3 We then proved an upper bound of p for δ = 1 by showing that
all such trinomials can be reduced to a smaller class that share
no roots among themselves.

The end result is a precise upper bound of p on root counts for δ = 1.
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The Extremal Examples

Theorem
.

f (x) = xp + x − 2 has p nonzero roots in Fp2 .

We originally noticed these trinomials while writing the first
program, by observing that they had the property
f (x + z) = f (x) for certain z .

It later became apparent that this property was a result of f
being a translation of the linear map T (x) = xp + x .
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The Extremal Examples, cont.

Briefly: Fp2 is a two-dimensional vector space over Fp.

If we can find a linear map with a nonzero root that isn’t the
zero transformation, we know that it has nullity 1, and p roots.

T (x) = xp + x is such a map. Since it’s linear, we know that it
also attains the value 2 p times, and therefore that
f (x) = T (x)− 2 attains zero p times, for nonzero x .

Sean W. Owen (UMBC) Extremal Trinomials July 19, 2015 9 / 17



Designing the Computational Experiments

Our experiments all ran on the same core method - check the roots
of each member of a subset of all the trinomials on Fp2 (more on
that shortly).
We varied whether they covered many fields, or recorded detailed data.
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The Experiments, pt. 2: The Empire Strikes Back

Our challenge was to cut down the set of trinomials we needed to
check: with no restrictions, its size grows as the sixth power of the
order of the field.

Start with all trinomials over Fp2 .

c1x
a1 + c2x

a2 + c3x
a3 : Θ(q6)

We’re allowed to divide by a monomial, so we can assume
c1 = 1 and a1 = 0.

1 + c2x
a2 + c3x

a3 : Θ(q4)
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The Experiments, pt. 3: The Return of the Jedi

If f has any roots, a transformation f (x) 7→ f (zx) for f (z) = 0
will make 1 a root. So we can assume that the sum of the
coefficients is zero.

1 + cxa2 − (c + 1)xa3 : Θ(q3)

We also chose to restrict a2 = 1.

1 + cx − (c + 1)xd : Θ(q2)

This is as well as we can do, more or less.
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The Experiments, pt. 4: The Force Awakens

f (x) = 1 + cx − (c + 1)xd

Naive method: Set d , c . Cycle over all x and count zeros. Θ(q3)

However! Once d is set, x is a root for at most one c .

So instead... Set d . For each x , solve for c . Count how many
times each c appears. Θ(q2).
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The Upper Bound

All of that turns out to have more uses than just optimizing our
experiments; each of those results is integral to the proof of our
upper bound.

Theorem
Over a finite field Fq with q = p2, if a trinomial

f (x) = c1 + c2x
a2 + ca33

satisfies δ = gcd(a2, a3, q − 1) = 1, then it has no more than p roots.
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The Upper Bound, pt. 2: The Temple of Doom

Say that f (x) has r roots.

It can be turned into 1 + cxa2 − (c + 1)xa3 for some c , by
dividing by c1 and taking f (zx).

However, if r > 1, we can make more than one choice of z for
that process. We can make r choices, in fact.

So, from f (x), we can find r , trinomials of that reduced form
with r roots, and δ = 1 guarantees they’re all distinct.
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The Upper Bound, pt. 3; The Last Crusade

Now, remember, none of those trinomials have any roots in
common but 1.

So, together, they have r(r − 1) + 1 roots.

But there are only p2 − 1 nonzero elements in the field. So

r 2 − r + 1 ≤ p2 − 1.

And we find that the largest integer satisfying this is p.

Sean W. Owen (UMBC) Extremal Trinomials July 19, 2015 16 / 17



Extensions

Both of our major results work in the same way on any
even-degree field. xp

n
+ x − 2 has pn roots on Fp2n , and we can

show that this is a maximum.

We can apply this method to δ 6= 1, by substituting y = xδ.

1 + x2 + x6 7−→ 1 + y + y 3

Our proof of the upper bound may work in a modified form on
polynomials with more terms. We’re not sure.
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