Refining Fewnomial Theory for 2×2 Systems

Mark Stahl

The University of Texas at Austin

July 21, 2015

History

Descartes' Rule of Signs ($17^{\text {th }}$ century)

If $f(x):=c_{1} x^{a_{1}}+\cdots+c_{T} x^{a_{T}} \in \mathbb{R}\left[x, x^{-1}\right]$ and $\left(a_{1}<\cdots<a_{t}\right)$, then the number of positive roots (counting multiplicity) is less than or equal to the number of sign alternations in $\left(c_{1}, \cdots, c_{T}\right)$.

- Direct consequence is that the maximum finite number of positive roots is $(T-1)$
- Relating Descartes' Rule to multivariable systems of polynomials remains a difficult open problem

Definitions

Definition

We define a $\mathbf{2} \times \mathbf{2}$ System as a system of two polynomials and two variables.

Definition

We define a systems of two variables where one is a trinomial and the other is an m-nomial as a System of Type ($\mathbf{3 , m}$).

Example:

$$
\begin{gathered}
\beta+x^{r_{2}} y^{s_{2}}+x^{r_{3}} y^{s_{3}} \\
\alpha_{1}+\alpha_{2} x^{a_{2}} y^{b_{2}}+\cdots+\alpha_{m} x^{a_{m}} y^{b_{m}}
\end{gathered}
$$

where $\beta, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$.

Goals

We look at systems of type $(3, m)$:

$$
\begin{gathered}
\beta+x^{r_{2}} y^{s_{2}}+x^{r_{3}} y^{s_{3}} \\
\alpha_{1}+\alpha_{2} x^{a_{2}} y^{b_{2}}+\cdots+\alpha_{m} x^{a_{m}} y^{b_{m}}
\end{gathered}
$$

where $\beta, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$.

- The maximum finite number of roots in \mathbb{R}_{+}^{2} of systems of type $(3, m)$ is known to lie between $2 m-1$ and $\frac{2}{3} m^{3}+5 m$

Goals

We look at systems of type $(3, m)$:

$$
\begin{gathered}
\beta+x^{r_{2}} y^{s_{2}}+x^{r_{3}} y^{s_{3}} \\
\alpha_{1}+\alpha_{2} x^{a_{2}} y^{b_{2}}+\cdots+\alpha_{m} x^{a_{m}} y^{b_{m}}
\end{gathered}
$$

where $\beta, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$.

- The maximum finite number of roots in \mathbb{R}_{+}^{2} of systems of type $(3, m)$ is known to lie between $2 m-1$ and $\frac{2}{3} m^{3}+5 m$
- We want to tighten current bounds
- We want to construct new extremal examples of minimal height (simpler examples)

Techniques

Rolle's Theorem

If $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and differentiable, and $f(a)=f(b)$, then there is a $c \in(a, b)$ such that $f^{\prime}(c)=0$.

- Techniques applied to this problem have been variants of Rolle's Theorem and a result of Polya on the Wronskian
- We will consider intersections of convex arcs

Figure: Rolle's Theorem

Techniques

Rolle's Theorem

If $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and differentiable, and $f(a)=f(b)$, then there is a $c \in(a, b)$ such that $f^{\prime}(c)=0$.

- Techniques applied to this problem have been variants of Rolle's Theorem and a result of Polya on the Wronskian
- We will consider intersections of convex arcs

Figure: Rolle's Theorem

Figure: Haas, 2000

Big Picture

- New systems help by giving insight into fewnomial theory
- New systems also lead to derivations of new facts

Big Picture

- New systems help by giving insight into fewnomial theory
- New systems also lead to derivations of new facts
- The idea so to create a system of type $(3, m)$ with $2 m-1$ roots in \mathbb{R}_{+}^{2} in order to get a system of type ($3, m+1$) with $2(m+1)-1$ roots in \mathbb{R}_{+}^{2}
- So we will start with a system of type $(3,3)$ to construct a system of type $(3,4)$

Big Picture

In 2000, Haas found the first 2×2 system of type $(3,3)$ with 5 roots in \mathbb{R}_{+}^{2}

$$
\begin{aligned}
& y^{106}+1.1 x^{53}-1.1 x \\
& x^{106}+1.1 y^{53}-1.1 y
\end{aligned}
$$

In 2007, the simplest 2×2 system of type $(3,3)$ with 5 roots in \mathbb{R}_{+}^{2}, discovered by Dickenstein, Rojas, Rosek, and Shih was found:

$$
\begin{aligned}
& x^{6}+\frac{44}{31} y^{3}-y \\
& y^{6}+\frac{44}{31} x^{3}-x
\end{aligned}
$$

Small Picture

We specifically look at the following system:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right):=x_{1}^{5}-\frac{49}{95} x_{1}^{3} x_{2}+x_{2}^{6} \\
& g\left(x_{1}, x_{2}\right):=x_{2}^{5}-\frac{49}{95} x_{1} x_{2}^{3}+x_{1}^{6}
\end{aligned}
$$

- We verify we have 5 roots in \mathbb{R}_{+}^{2}
- We reduce the system
- Construct a 2×2 system of type $(3,4)$ by adding a monomial term

Finding Roots

We start with

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right):=x_{1}^{5}-\frac{49}{95} x_{1}^{3} x_{2}+x_{2}^{6} \\
& g\left(x_{1}, x_{2}\right):=x_{2}^{5}-\frac{49}{95} x_{1} x_{2}^{3}+x_{1}^{6}
\end{aligned}
$$

By rescaling and performing a change of variables, we got

$$
\begin{gathered}
r(u, v):=u-\frac{49}{95}+v \\
s(u, v):=u^{\frac{1}{7}} v^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}} v^{\frac{-1}{7}}
\end{gathered}
$$

where $u=x_{1}^{2} x_{2}^{-1}$ and $v=x_{1}^{-3} x_{2}^{5}$

Finding Roots

$$
\begin{gathered}
r(u, v):=u-\frac{49}{95}+v \\
s(u, v):=u^{\frac{1}{7}} v^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}} v^{\frac{-1}{7}}
\end{gathered}
$$

Setting $r=s=0$, we get the following algebraic function:

$$
G(u):=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}=0
$$

Finding Roots

We care about roots that lie in the interval $\left(0, \frac{49}{95}\right)$. Why?

$$
G(u):=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}=0
$$

Recall

We obtained $G(u)$ by setting $r=s=0$. So

$$
r(u, v):=u-\frac{49}{95}+v=0 \Rightarrow v=\frac{49}{95}-u
$$

- So the roots of $\mathrm{G}(\mathrm{u})$ that lie in $\left(0, \frac{49}{95}\right)$ imply that v is also positive.

Finding Roots

We care about roots that lie in the interval $\left(0, \frac{49}{95}\right)$. Why?

$$
G(u):=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}=0
$$

Recall

We obtained $G(u)$ by setting $r=s=0$. So

$$
r(u, v):=u-\frac{49}{95}+v=0 \Rightarrow v=\frac{49}{95}-u
$$

- So the roots of $\mathrm{G}(\mathrm{u})$ that lie in $\left(0, \frac{49}{95}\right)$ imply that v is also positive.
- This implies $x_{1}, x_{2}>0$

Finding Roots

$$
G(u):=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}=0
$$

Why do we care about the roots at all?

- Finding roots will give us Regions of Interest to insert a "hump" that yields 7 intersections with $G(u)$
- How do we find these roots?

Finding Roots

Definition

Given any $d, e \in \mathbb{N}$ and $f, g \in \mathbb{C}[x]$ with $\operatorname{deg}(f) \leq d$ and $\operatorname{deg}(g) \leq e$, the Sylvester Matrix of (f, g) of format (d, e) is:

$$
\operatorname{SYL}_{(d, e)}(f, g)=\left(\begin{array}{ccccccc}
a_{0} & a_{1} & \cdots & a_{d} & 0 & \cdots & 0 \\
0 & a_{0} & a_{1} & \cdots & a_{d} & \cdots & 0 \\
\vdots & \ddots & \ddots & & & \ddots & \\
0 & \cdots & 0 & a_{0} & a_{1} & \cdots & a_{d} \\
b_{0} & b_{1} & \cdots & b_{e} & 0 & \cdots & 0 \\
0 & b_{0} & b_{1} & \cdots & b_{e} & \cdots & 0 \\
\vdots & \ddots & \ddots & & & \ddots & \\
0 & \cdots & 0 & b_{0} & b_{1} & \cdots & b_{e}
\end{array}\right)
$$

Figure: Sylvester Matrix of (f, g) of format (d, e)

Finding Roots

Definition

Given any $d, e \in \mathbb{N}$ and $f, g \in \mathbb{C}[x]$ with $\operatorname{deg}(f) \leq d$ and $\operatorname{deg}(g) \leq e$, the Sylvester Matrix of (f, g) of format (d, e) is:

Definition

The Resultant of f and g (denoted $\left.\operatorname{Res}_{(d, e)}(f, g)\right)$ is the determinant of their Sylvester Matrix.

Finding Roots

- We have

$$
\begin{gathered}
r(u, v):=u-\frac{49}{95}+v \\
s(u, v):=u^{\frac{1}{7}} v^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}} v^{\frac{-1}{7}}
\end{gathered}
$$

- Set $u=p^{7}$ and $v=q^{7}$ and multiply $z(p, q)$ by q

$$
\begin{gathered}
t(p, q):=p^{7}-\frac{49}{95}+q^{7} \\
z(p, q):=p q^{4}-\frac{49}{95} q+p^{16}
\end{gathered}
$$

- Now we get the resultant of t and z with respect to q to find the roots

Finding Roots

- The resultant yields the following polynomial

$$
p^{112}-\frac{823543}{857375} p^{56}+\cdots-\frac{33232930569601}{6634204312890625}
$$

Finding Roots

- The resultant yields the following polynomial

$$
p^{112}-\frac{823543}{857375} p^{56}+\cdots-\frac{33232930569601}{6634204312890625}
$$

- Recall we had $u=p^{7}$. So we substitute $p=u^{\frac{1}{7}}$.

$$
u^{16}-\frac{823543}{857375} u^{8}+\cdots-\frac{33232930569601}{6634204312890625}
$$

- This is an easier polynomial to compute roots

Humps and Bumps

$$
G(u):=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}=0
$$

Why do we care about the roots at all?

- Finding roots will give us Regions of Interest to insert a "hump" to find 7 intersections with $G(u)$ in $\left(0, \frac{49}{95}\right)$

Humps and Bumps

$$
G(u):=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}=0
$$

Why do we care about the roots at all?

- Finding roots will give us Regions of Interest to insert a "hump" to find 7 intersections with $G(u)$ in $\left(0, \frac{49}{95}\right)$

Constructing New Systems

$$
G(u):=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}=0
$$

- So where do the humps come from?
- We use the monomial term

$$
H(u):=c u^{a}\left(\frac{49}{95}-u\right)^{b}
$$

- For what (a, b, c) does $G(u)$ and $H(u)$ have 7 intersections

Humps and Bumps

$$
H(u):=c u^{a}\left(\frac{49}{95}-u\right)^{b}
$$

How do we choose (a, b, c) ?

- We want to insert a hump in some interval $\left(i_{1}, i_{2}\right)$
- We want the peak to be at the midpoint $\left(\frac{i_{1}+i_{2}}{2}\right)$
- We want the the inflection points to be at the endpoints i_{1}, i_{2}

Humps and Bumps

$$
H(u):=c u^{a}\left(\frac{49}{95}-u\right)^{b}
$$

How do we choose (a, b, c) ?

- By taking some derivatives and with some algebra we find that

$$
a=\frac{m^{2}}{d^{2}}\left(1-\frac{95 m}{49}\right)+\frac{95 m}{49}
$$

where $m=\frac{i_{1}+i_{2}}{2}$ and $d=\frac{i_{2}-i_{1}}{2}$

Humps and Bumps

$$
H(u):=c u^{a}\left(\frac{49}{95}-u\right)^{b}
$$

How do we choose (a, b, c) ?

- We also get

$$
b=\frac{49 a}{95 m}-a
$$

where $m=\frac{i_{1}+i_{2}}{2}$ and

$$
c=h \cdot\left(\frac{a+b}{49 / 95}\right)^{a+b} \cdot \frac{1}{a^{a} b^{b}}
$$

where h is the desired height of the peak of $H(u)$

Constructing New Examples

Once we get a $H(u)$ that intersects $G(u)$, what is next?

- We let $G_{2}(u)=G(u)-H(u)$
$G_{2}(u)=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}-c u^{a}\left(\frac{49}{95}-u\right)^{b}$

Figure: $G(u)$ is red; $H(u)$ is blue

Constructing New Examples

Once we get a $H(u)$ that intersects $G(u)$, what is next?

- We let $G_{2}(u)=G(u)-H(u)$

$$
G_{2}(u)=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}-c u^{a}\left(\frac{49}{95}-u\right)^{b}
$$

Figure: $G_{2}(u)$

Constructing New Examples

How do we create a new system?

$$
G_{2}(u)=u^{\frac{1}{7}}\left(\frac{49}{95}-u\right)^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}}\left(\frac{49}{95}-u\right)^{\frac{-1}{7}}-c u^{a}\left(\frac{49}{95}-u\right)^{b}
$$

- We undo the substitution to get a new system

$$
\begin{gathered}
r_{2}(u, v):=u-\frac{49}{95}+v \\
s_{2}(u, v):=u^{\frac{1}{7}} v^{\frac{3}{7}}-\frac{49}{95}+u^{\frac{16}{7}} v^{\frac{-1}{7}}-c u^{a} v^{b}
\end{gathered}
$$

- Undo change of variables to get 2×2 system of type $(3,4)$ with 7 roots in \mathbb{R}_{+}^{2}

Finding More examples

- We started off by finding two humps for regions 2-5
- One centered between two endpoints of the region
- One centered on actual peak of that region
- We then found examples in Regions $1 \& 6$
- We found examples with humps closer to endpoints

Figure: Regions of Interest

Finding More examples

- We started off by finding two humps for regions 2-5
- One centered between two endpoints of the region
- One centered on actual peak of that region
- We then found examples in Regions $1 \& 6$
- We found examples with humps closer to endpoints

Figure: Regions of Interest

Figure: Results

Finding More examples

Please note...

- Scalar multiples work too!
- Colored areas yield more possible examples

Figure: Regions of Interest

Figure: Results

Quest to a Simple Example

Recall that one of our goals is to find extremal examples of minimal height

Quest to a Simple Example

Recall that one of our goals is to find extremal examples of minimal height

In 2007, the first known 2×2 system of type $(3,4)$ with 7 roots in \mathbb{R}_{+}^{2} was discovered by Gomez, Niles, and Rojas

$$
\begin{gathered}
x^{6}+\frac{44}{31} y^{3}-y \\
y^{14}+\frac{44}{31} x^{3} y^{8}-x y^{8}+1936254 x^{133}
\end{gathered}
$$

Quest to a Simple Example

Recall that one of our goals is to find extremal examples of minimal height

In 2007, the first known 2×2 system of type $(3,4)$ with 7 roots in \mathbb{R}_{+}^{2} was discovered by Gomez, Niles, and Rojas

$$
\begin{gathered}
x^{6}+\frac{44}{31} y^{3}-y \\
y^{14}+\frac{44}{31} x^{3} y^{8}-x y^{8}+1936254 x^{133}
\end{gathered}
$$

GOAL! We found a new example!

Quest to a Simple Example

In 2007, the first known 2×2 system of type $(3,4)$ with 7 roots in \mathbb{R}_{+}^{2} was discovered by Gomez, Niles, and Rojas

$$
\begin{gathered}
x^{6}+\frac{44}{31} y^{3}-y \\
y^{14}+\frac{44}{31} x^{3} y^{8}-x y^{8}+1936254 x^{133}
\end{gathered}
$$

My example

$$
\begin{gathered}
x^{5}-\frac{49}{95} x^{3} y+y^{6} \\
x^{33} y^{5}-\frac{49}{95} y^{3} x^{34}+x^{39}+5807 y^{62}
\end{gathered}
$$

Quest to a Simple Example

$$
\begin{gathered}
x^{5}-\frac{49}{95} x^{3} y+y^{6} \\
x^{33} y^{5}-\frac{49}{95} y^{3} x^{34}+x^{39}+5807 y^{62}
\end{gathered}
$$

Figure: Regions of Interest

Figure: Results

New Direction

There are more systems to look at!

$$
\begin{aligned}
& 1+x^{4}-\frac{10}{17} x^{5} y^{2} \\
& 1+y^{4}-\frac{10}{17} x^{2} y^{5}
\end{aligned}
$$

New Direction

There are more systems to look at!

$$
\begin{aligned}
& 1+x^{4}-\frac{10}{17} x^{5} y^{2} \\
& 1+y^{4}-\frac{10}{17} x^{2} y^{5}
\end{aligned}
$$

Preliminary Result:

$$
\begin{gathered}
1+x^{4}-\frac{10}{17} x^{5} y^{2} \\
1+y^{4}-\frac{10}{17} x^{2} y^{5}+102000 x^{-94} y^{-35}
\end{gathered}
$$

New Direction

We now look to prove the following:

Conjecture

Let us fix an integer k. Then the maximum number of roots of

$$
\sum_{i=1}^{k} c_{i} u^{a_{i}}(1-u)^{b_{i}} \text { in }(0,1)
$$

(over all real a_{i}, b_{i}, and c_{i}) is $\mathrm{O}(k)$.

