ZEROS OF THE MODULAR FORM $\Delta_{k, l}=E_{k} E_{l}-E_{k+l}$

POLINA VULAKH

Abstract

We define $\Delta_{k, l}$ to be the modular form $E_{k} E_{l}+E_{k+l}$ of weight $k+l$ where E_{k} is the Eisenstein series of weight k and study the location of zeros of $\Delta_{k, l}$ in \mathcal{F}, the standard fundamental domain. We conjecture that all of its zeros are located on the bottom arc of \mathcal{F} and on the lines $x= \pm \frac{1}{2}$.

1. Introduction

Rankin and Swinnerton-Dyer proved that all zeros of E_{k} in the fundamental domain \mathcal{F} lie on the arc $|z|=1[\mathrm{RS}]$. We study the location of the zeros of the modular form $\Delta_{k, l}$ in \mathcal{F}.
Conjecture 1.1. The zeros of $\Delta_{k, l}$ in \mathcal{F} lie on the boundary $\mathcal{B}=\{z=x+i y \in \mathcal{F} \mid x=$ $\pm \frac{1}{2}$ or $\left.|z|=1\right\}$.
Conjecture 1.2. The modular form $\Delta_{k, l}$ has at least $\left\lfloor\frac{l}{6}\right\rfloor-1$ zeros on the line $x=\frac{1}{2}$.
Theorem 1.3. The modular form $\Delta_{k, k}$ has at least $\left\lfloor\frac{k}{6}\right\rfloor-(1+n)$ zeros in \mathcal{F} that lie on the line $x=\frac{1}{2}$ where n is the number of zeros of the form $\frac{1}{2}+i y$ for $y>c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_{0} \leq \frac{1}{\sqrt{8}}$.

2. Background

This material is standard in the theory of modular forms. We use [Z] as reference, while there are many others that would suffice.

The group action of $S L_{2}(\mathbb{R})$ on $\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ is defined by $z \mapsto \gamma(z)$ where for $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{R}), \gamma(z)=\frac{a z+b}{c z+d}$. We extend this to $\mathbb{H} \cup\{\infty\} \cup \mathbb{Q}$ such that $\gamma(\infty)=\frac{a}{c}$.

A complex-valued function f is a modular form if it is holomorphic for every point $z \in \mathbb{H} \cup\{\infty\} \cup \mathbb{Q}$ and satisfies the transformation law $f(\gamma(z))=f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)$ for all $z \in \mathbb{H} \cup\{\infty\} \cup \mathbb{Q}$, all $\gamma \in S L_{2}(\mathbb{Z})$, and some $k \in \mathbb{Z}$. Typically, k is positive and even since the only modular forms of weight 0 are constant functions, the only modular form of odd weight is the 0 -function, and there are no modular forms of negative weight.

Two elements $z_{1}, z_{2} \in \mathbb{H} \cup\{\infty\} \cup \mathbb{Q}$ are $S L_{2}(\mathbb{Z})$-equivalent if there exists some $\gamma \in S L_{2}(\mathbb{Z})$ such that $\gamma\left(z_{1}\right)=z_{2}$.

There exist infinitely many $S L_{2}(\mathbb{Z})$-equivalent regions of \mathbb{H}, one being the fundamental domain. This is denoted as $\mathcal{F}=\left\{z=x+i y \in \mathbb{H}: x \in\left(-\frac{1}{2}, \frac{1}{2}\right),|z| \geq 1\right\}$. If we are concerned with locating the zeros of a modular form, it suffices to locate unique zeros up to $S L_{2}(\mathbb{Z})$ equivalence. Thus we look for zeros in \mathcal{F}. Note that the lines $x=-\frac{1}{2}$ and $x=\frac{1}{2}$ are $S L_{2}(\mathbb{Z})$ equivalent, as are the two sides of the arc $|z|=1, x \in\left[-\frac{1}{2}, 0\right]$ and $|z|=1, x \in\left[0,-\frac{1}{2}\right]$ so it suffices to consider only one of each.

The valence formula

$$
\begin{equation*}
\frac{1}{2} v_{i}(f)+\frac{1}{3} v_{\rho}(f)+\sum_{\substack{z \neq i, \rho \\ z \in \mathbb{H}}} v_{z}(f)=\frac{k}{12} \tag{2.1}
\end{equation*}
$$

tells us that a modular form f of weight k has precisely $\frac{k}{12}$ zeros.
The Eisenstein series of weight k for $z \in \mathbb{H} \cup\{\infty\}, k \geq 4$ is defined by

$$
\begin{equation*}
E_{k}(z)=\frac{1}{2} \sum_{\substack{(c, d)=1 \\ c, d \in \mathbb{Z}}} \frac{1}{(c z+d)^{k}} \tag{2.2}
\end{equation*}
$$

with a corresponding normalized Fourier expansion, $E_{k}(z)=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) e^{2 \pi i n z}$ where B_{k} denotes the k th Bernoulli number.

3. Proof of Theorem 1.3

For $k, l \geq 4$, we focus on the modular form of weight $k+l, E_{k}(z) E_{l}(z)-E_{k+l}(z)$, and its zeros. Note that this is a cusp form for all k, l and that $E\left(\frac{1}{2}+i y\right) \in \mathbb{R}$, so $E_{k}\left(\frac{1}{2}+i y\right) E_{l}\left(\frac{1}{2}+i y\right)-E_{k+l}\left(\frac{1}{2}+i y\right) \in \mathbb{R}$ as well. When $k=l=4, E_{k} E_{l}-E_{k+l}=0$ since $E_{4}^{2}=E_{8}$. Thus for the $k=l$ case, we focus on $k \geq 6$.

We want to approximate $E_{k}\left(\frac{1}{2}+i y\right)^{2}-E_{2 k}\left(\frac{1}{2}+i y\right)$ and use the resulting function to exhibit $\left\lfloor\frac{k}{6}\right\rfloor$ sign changes, showing that $E_{k}^{2}-E_{2 k}$ has $\left\lfloor\frac{k}{6}\right\rfloor-1$ zeros on the line $x=\frac{1}{2}$. Unfortunately, our method only works up to $y \leq c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_{0} \leq \frac{1}{\sqrt{8}}$, so we define n to be the number of zeros of the form $z=\frac{1}{2}+i y$ with $y>c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$ of $E_{k}^{2}-E_{2 k}$. Working with y in our range, we instead prove $\left\lfloor\frac{k}{6}\right\rfloor-(1+n)$ zeros.
The points we will use are of the form $z=\frac{1}{2}+i y_{m}$ where $y_{m}=\frac{\tan \left(\theta_{m}\right)}{2}$ for $\theta_{m}=\frac{m \pi}{k}$ where $m \in \mathbb{Z}$ such that $\left\lceil\frac{k}{3}\right\rceil \leq m<\frac{k}{2}-n$. If we rewrite $E_{k}=M_{k}+R_{k}$, then $E_{k}^{2}-$ $E_{2 k}=M_{k}^{2}-M_{2 k}+2 M_{k} R_{k}+R_{k}^{2}-R_{2 k}$. Then we wish to show $\left\lvert\, M_{k}\left(\frac{1}{2}+i y_{m}\right)-M_{2 k}\left(\frac{1}{2}+\right.\right.$ $\left.i y_{m}\right)\left|>\left|2 M_{k}\left(\frac{1}{2}+i y_{m}\right) R_{k}\left(\frac{1}{2}+i y_{m}\right)+R_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-R_{2 k}\left(\frac{1}{2}+i y_{m}\right)\right|\right.$. In order to do this, we need to bound $\left|2 M_{k}\left(\frac{1}{2}+i y_{m}\right) R_{k}\left(\frac{1}{2}+i y_{m}\right)+R_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-R_{2 k}\left(\frac{1}{2}+i y_{m}\right)\right|$ from above and $\left|M_{k}\left(\frac{1}{2}+i y_{m}\right)-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)\right|$ from below, the first of which requires bounding $\left|R_{k}\right|$ on its own.

Lemma 3.1. For all $\frac{\sqrt{3}}{2} \leq y \leq c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_{0} \leq \frac{1}{\sqrt{8}}$, the absolute value of the remainder term $\left|R_{k}\left(\frac{1}{2}+i y\right)\right|$ is less than $\frac{9+12 y}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}$.

Proof. Write $E_{k}\left(\frac{1}{2}+i y\right)=M_{k}\left(\frac{1}{2}+i y\right)+R_{k}\left(\frac{1}{2}+i y\right)$ where

$$
\begin{equation*}
M_{k}\left(\frac{1}{2}+i y\right)=\underbrace{1+\frac{1}{\left(\frac{1}{2}+i y\right)^{k}}+\frac{1}{\left(\frac{-1}{2}+i y\right)^{k}}}_{c^{2}+d^{2}=1,2} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{k}\left(\frac{1}{2}+i y\right)=\underbrace{\frac{1}{\left(\frac{3}{2}+i y\right)^{k}}}_{c=1, d=1 \text { and } c=-1, d=-1}+\frac{1}{2} \sum_{\substack{(c, d)=1, c^{2}+d^{2} \geq 5 \\ c, d \in \mathbb{Z}}} \frac{1}{\left(c\left(\frac{1}{2}+i y\right)+d\right)^{k}} \tag{3.2}
\end{equation*}
$$

Then $\left|R_{k}\left(\frac{1}{2}+i y\right)\right|=\frac{1}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}+\left|\frac{1}{2} \sum_{\substack{c^{2}+d^{2} \geq 5 \\(c, d=1 \\ c, d \in \mathbb{Z}}} \frac{1}{\left(c\left(\frac{1}{2}+i y\right)+d\right)^{k}}\right|$.
Rewrite

$$
\begin{equation*}
\left|\frac{1}{2} \sum_{\substack{c^{2}+d^{2} \geq 5 \\ \text { (c,d=1} \\ c, d \in \mathbb{Z}}} \frac{1}{\left(c\left(\frac{1}{2}+i y\right)+d\right)^{k}}\right|=\underbrace{\frac{1}{\left(4+4 y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(4 y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(\frac{25}{4}+y^{2}\right)^{\frac{k}{2}}}}_{c^{2}+d^{2}=5}+\frac{1}{2} \underbrace{}_{\substack{c^{2}+d^{2} \geq 10 \\(c, d \in=1 \\ c, d \in \mathbb{Z}}} \frac{1}{\left(\left(\frac{c}{2}+d\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} \tag{3.3}
\end{equation*}
$$

and observe that (c, d) and $(-c,-d)$ yield identical terms. Then we sum over positive c only, eliminating the coefficient of $\frac{1}{2}$. Similarly, for fixed c, the terms for (c, d) and $(c,-(d+c))$ yield idential terms as well. This lets us sum over positive d for each c, accounting for the lack of symmetry when $c=1$ and $c=2$. For simplicity, we drop the coprime condition on c and d.
Then

$$
\begin{equation*}
T_{k}\left(\frac{1}{2}+i y\right)=\sum_{c=1}^{\infty} \sum_{\substack{d \geq 1 \\ c^{2}+d^{2} \geq 10}}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+d\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(\left(\frac{c}{2}-d\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} \tag{3.4}
\end{equation*}
$$

and we proceed by finding an upper bound for each fixed c. Due to the isolated terms not included in $T_{k}\left(\frac{1}{2}+i y\right), c=1$ and $c=2$ must be bounded separately.
For $c=1$ we have
(3.5)

$$
\sum_{\substack{d \geq 1 \\ 1+d^{2} \geq 10}}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+d\right)^{2}+y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(\left(\frac{1}{2}-d\right)^{2}+y^{2}\right)^{\frac{k}{2}}}=\frac{1}{\left(\frac{5}{2}+y^{2}\right)^{\frac{k}{2}}}+2 \sum_{d=3}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+d\right)^{2}+y^{2}\right)^{\frac{k}{2}}}
$$

$$
\begin{align*}
& \leq \frac{1}{\left(\frac{5}{2}+y^{2}\right)^{\frac{k}{2}}}+2\left(\frac{1}{\left(\left(\frac{1}{2}+3\right)^{2}+y^{2}\right)^{\frac{k}{2}}}+\int_{3}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+x\right)^{2}+y^{2}\right)^{\frac{k}{2}}} d x\right) \tag{3.6}\\
& \leq \frac{1}{\left(\frac{5}{2}+y^{2}\right)^{\frac{k}{2}}}+2\left(\frac{1}{\left(\left(\frac{1}{2}+3\right)^{2}+y^{2}\right)^{\frac{k}{2}}}+\int_{3}^{y+\frac{1}{2}} \frac{1}{\left(\left(\frac{1}{2}+x\right)^{2}+y^{2}\right)^{\frac{k}{2}}} d x+\int_{y+\frac{1}{2}}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+x\right)^{2}+y^{2}\right)^{\frac{k}{2}}} d x\right) \tag{3.7}\\
& <\frac{1}{\left(\frac{5}{2}+y^{2}\right)^{\frac{k}{2}}}+2(\frac{1}{\left(\left(\frac{1}{2}+3\right)^{2}+y^{2}\right)^{\frac{k}{2}}}+\underbrace{}_{\frac{\frac{1}{2}+x \leq y}{\int_{3}^{y+\frac{1}{2}} \frac{1}{\left.\left(\frac{1}{2}+3\right)^{2}+y^{2}\right)^{\frac{k}{2}}} d x}+\underbrace{\left.\int_{y+\frac{1}{2}}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+x\right)^{2}\right)^{\frac{k}{2}}} d x\right)}_{\frac{1}{2}+x>y}} \begin{array}{l}
1 \\
\left(\frac{5}{2}+y^{2}\right)^{\frac{k}{2}}
\end{array} \frac{2+2 y}{\left(\frac{49}{4}+y^{2}\right)^{\frac{k}{2}}}+\frac{2}{(k-1)(y+1)^{k-1}} \tag{3.8}
\end{align*}
$$

Similarly,
(3.10)

$$
\sum_{\substack{d \geq 1 \\ 4+d^{2} \geq 10}}^{\infty} \frac{1}{\left((1+d)^{2}+4 y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left((1-d)^{2}+4 y^{2}\right)^{\frac{k}{2}}}=\underbrace{\frac{1}{\left(4+4 y^{2}\right)^{\frac{k}{2}}}}_{d=-3}+\underbrace{\frac{1}{\left(9+4 y^{2}\right)^{\frac{k}{2}}}}_{d=-4}+2 \sum_{d=3}^{\infty} \frac{1}{\left((1+d)^{2}+4 y^{2}\right)^{\frac{k}{2}}}
$$

where

$$
\begin{align*}
2 \sum_{d=3}^{\infty} \frac{1}{\left((1+d)^{2}+4 y^{2}\right)^{\frac{k}{2}}} & \leq 2\left(\frac{1}{\left((1+3)^{2}+4 y^{2}\right)^{\frac{k}{2}}}+\int_{3}^{\infty} \frac{1}{\left((1+x)^{2}+4 y^{2}\right)^{\frac{k}{2}}} d x\right) \tag{3.11}\\
& \left.=2\left(\frac{1}{\left(16+4 y^{2}\right)^{\frac{k}{2}}}+\int_{3}^{2 y-1} \frac{1}{\left((1+x)^{2}\right.}+4 y^{2}\right)^{\frac{k}{2}} d x+\int_{2 y-1}^{\infty} \frac{1}{\left((1+x)^{2}+4 y^{2}\right)^{\frac{k}{2}}} d x\right) \tag{3.12}\\
& <2(\frac{1}{\left(16+4 y^{2}\right)^{\frac{k}{2}}}+\underbrace{\int_{3}^{2 y-1} \frac{1}{\left(4 y^{2}\right)^{\frac{k}{2}}} d x}_{x+1 \leq 2 y}+\underbrace{\int_{2 y-1}^{\infty} \frac{1}{\left((1+x)^{2}\right)^{\frac{k}{2}}} d x}_{x+1>2 y}) \tag{3.13}\\
& <\frac{2}{\left(16+4 y^{2}\right)^{\frac{k}{2}}}+\frac{3}{(2 y)^{k-1}} \tag{3.14}
\end{align*}
$$

which totals to $\frac{1}{\left(4+4 y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(9+4 y^{2}\right)^{\frac{k}{2}}}+\frac{2}{\left(16+4 y^{2}\right)^{\frac{k}{2}}}+\frac{3}{(2 y)^{k-1}}$ for $c=2$.
For general $c \geq 3$,

$$
\begin{equation*}
\sum_{\substack{d \geq 1 \\ c^{2}+d^{2} \geq 10}}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+d\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(\left(\frac{c}{2}-d\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}}=2 \sum_{d=1}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+d\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} \leq 4\left(\frac{1}{\left(\left(\frac{c}{2}+\frac{1-c}{2}\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}}+\int_{\frac{1-c}{2}}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+x\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} d x\right) \tag{3.15}
\end{equation*}
$$

if c is odd, and

$$
\begin{equation*}
2 \sum_{d=1}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+d\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} \leq 4\left(\frac{1}{\left(\left(\frac{c}{2}+1-\frac{c}{2}\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}}+\int_{1-\frac{c}{2}}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+x\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} d x\right) \tag{3.16}
\end{equation*}
$$

if c is even. We bound odd c by even c to get

$$
\begin{align*}
2 \sum_{d=1}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+d\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} & \leq 4\left(\frac{1}{\left(\left(\frac{c}{2}+\frac{1-c}{2}\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}}+\int_{\frac{1-c}{2}}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+x\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} d x\right) \tag{3.17}\\
& <4\left(\frac{1}{\left(\frac{1}{4}+c^{2} y^{2}\right)^{\frac{k}{2}}}+\int_{0}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+x\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} d x\right) \tag{3.18}\\
& =4\left(\frac{1}{\left(\frac{1}{4}+c^{2} y^{2}\right)^{\frac{k}{2}}}+\left(\int_{0}^{c y-\frac{1}{2}} \frac{1}{\left(\left(\frac{1}{2}+x\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} d x+\int_{c y-\frac{1}{2}}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+x\right)^{2}+c^{2} y^{2}\right)^{\frac{k}{2}}} d x\right)\right. \tag{3.19}\\
& <4(\frac{1}{\left(\frac{1}{4}+c^{2} y^{2}\right)^{\frac{k}{2}}}+(\underbrace{\int_{0}^{c y-\frac{1}{2}} \frac{1}{\left(c^{2} y^{2}\right)^{\frac{k}{2}}} d x}_{x+\frac{1}{2} \leq c y}+\underbrace{\left.\int_{c y-\frac{1}{2}}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+x\right)^{2}\right)^{\frac{k}{2}}} d x\right)}_{x+\frac{1}{2}>c y} \tag{3.20}\\
& <\frac{4}{\left(\frac{1}{4}+c^{2} y^{2}\right)^{\frac{k}{2}}}+\left(4+\frac{4}{k-1}\right) \frac{1}{(c y)^{k-1}} \tag{3.21}
\end{align*}
$$

Summing over all fixed $c \geq 3$ gives us

$$
\begin{align*}
\sum_{c=3}^{(3.22)}\left(\frac{4}{\left(\frac{1}{4}+c^{2} y^{2}\right)^{\frac{k}{2}}}+\frac{4}{(c y)^{k-1}}+\frac{4}{(k-1)(c y)^{k-1}}\right) & <\frac{4}{\left(\frac{1}{4}+9 y^{2}\right)^{\frac{k}{2}}}+\frac{4}{(3 y)^{k-1}}+\frac{4}{(k-1)(3 y)^{k-1}}+\int_{3}^{\infty}\left(\frac{1}{\left(\frac{1}{4}+x^{2} y^{2}\right)^{\frac{k}{2}}}+\frac{1}{(x y)^{k-1}}+\frac{1}{(k-1)(x y)^{k-1}} d x\right) \\
& <\frac{4}{\left(\frac{1}{4}+9 y^{2}\right)^{\frac{k}{2}}}+\frac{4+\frac{4}{k-1}}{(3 y)^{k-1}}+\frac{8+\frac{4}{k-1}}{(k-2) 3^{k-2} y^{k-1}}<\frac{4}{\left(\frac{1}{4}+9 y^{2}\right)^{\frac{k}{2}}}+\frac{11}{(3 y)^{k-1}}
\end{align*}
$$

which, combined with our upper bounds for $c=1, c=2$ gives us

$$
\begin{align*}
T_{k}\left(\frac{1}{2}+i y\right)<\frac{1}{\left(\frac{5}{2}+y^{2}\right)^{\frac{k}{2}}}+\frac{2+2 y}{\left(\frac{49}{4}+y^{2}\right)^{\frac{k}{2}}}+ & \frac{2}{(k-1)(y+1)^{k-1}}+\frac{1}{\left(4+4 y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(9+4 y^{2}\right)^{\frac{k}{2}}}+ \tag{3.24}\\
& \frac{2}{\left(16+4 y^{2}\right)^{\frac{k}{2}}}+\frac{3}{(2 y)^{k-1}}+\frac{4}{\left(\frac{1}{4}+9 y^{2}\right)^{\frac{k}{2}}}+\frac{11}{(3 y)^{k-1}}
\end{align*}
$$

and

$$
\begin{equation*}
\left|R_{k}\left(\frac{1}{2}+i y\right)\right|<\frac{1}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(4+4 y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(4 y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(\frac{25}{4}+y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(\frac{5}{2}+y^{2}\right)^{\frac{k}{2}}}+\frac{2+2 y}{\left(\frac{49}{4}+y^{2}\right)^{\frac{k}{2}}} \tag{3.25}
\end{equation*}
$$

$$
\begin{equation*}
<\frac{4}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}+\frac{10}{\left(4 y^{2}\right)^{\frac{k}{2}}}+\frac{2 y}{\left(\frac{49}{4}+y^{2}\right)^{\frac{k}{2}}}+\frac{\frac{2 y+2}{k-1}}{\left(y^{2}+2 y+1\right)^{\frac{k}{2}}}+\frac{6 y}{\left(4 y^{2}\right)^{\frac{k}{2}}}+\frac{33 y}{\left(9 y^{2}\right)^{\frac{k}{2}}} \tag{3.28}
\end{equation*}
$$

$$
\begin{align*}
& +\frac{2}{(k-1)(y+1)^{k-1}}+\frac{1}{\left(4+4 y^{2}\right)^{\frac{k}{2}}}+\frac{1}{\left(9+4 y^{2}\right)^{\frac{k}{2}}}+\frac{2}{\left(16+4 y^{2}\right)^{\frac{k}{2}}} \tag{3.26}\\
& +\frac{3}{(2 y)^{k-1}}+\frac{4}{\left(\frac{1}{4}+9 y^{2}\right)^{\frac{k}{2}}}+\frac{11}{(3 y)^{k-1}} \tag{3.27}
\end{align*}
$$

$$
\begin{equation*}
<\frac{7}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}+\frac{12 y+2}{\left(\frac{49}{4}+y^{2}\right)^{\frac{k}{2}}}<\frac{9+12 y}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}} \tag{3.29}
\end{equation*}
$$

Thus for any $z \in \mathbb{H}$ of the form $\frac{1}{2}+i y,\left|R_{k}\left(\frac{1}{2}+i y\right)\right|<\frac{9+12 y}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}$.
Lemma 3.2. For all $\frac{\sqrt{3}}{2} \leq y \leq c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_{0} \leq \frac{1}{\sqrt{8}}$, the absolute value of the main term $\left|2 M_{k}\left(\frac{1}{2}+i y\right) R_{k}\left(\frac{1}{2}+i y\right)+R_{k}\left(\frac{1}{2}+i y\right)^{2}-R_{2 k}\left(\frac{1}{2}+i y\right)\right|$ is strictly less than $8\left(\frac{9+12 y}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}\right)$.

Proof. Recall that $M_{k}\left(\frac{1}{2}+i y\right)=1+\frac{1}{\left(\frac{1}{2}+i y\right)^{k}}+\frac{1}{\left(-\frac{1}{2}+i y\right)^{k}}$, so $\left|M_{k}\left(\frac{1}{2}+i y\right)\right| \leq 1+\left|\frac{1}{\left(\frac{1}{2}+i y\right)^{k}}\right|+$ $\left|\frac{1}{\left(-\frac{1}{2}+i y\right)^{k}}\right| \leq 3$ and $\left|R_{k}\left(\frac{1}{2}+i y\right)\right|<\frac{9+12 y}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}$ which is decreasing in k. Then
$\left|2 M_{k}\left(\frac{1}{2}+i y\right) R_{k}\left(\frac{1}{2}+i y\right)+R_{k}\left(\frac{1}{2}+i y\right)^{2}-R_{2 k}\left(\frac{1}{2}+i y\right)\right| \leq 2\left|M_{k}\left(\frac{1}{2}+i y\right)\right|\left|R_{k}\left(\frac{1}{2}+i y\right)\right|+\left|R_{k}\left(\frac{1}{2}+i y\right)\right|^{2}$

$$
\begin{gather*}
\quad+\left|R_{2 k}\left(\frac{1}{2}+i y\right)\right| \tag{3.31}\\
<6\left|R_{k}\left(\frac{1}{2}+i y\right)\right|+2\left|R_{k}\left(\frac{1}{2}+i y\right)\right| \tag{3.32}\\
=8\left|R_{k}\left(\frac{1}{2}+i y\right)\right| \tag{3.33}
\end{gather*}
$$

which implies $2 M_{k}\left(\frac{1}{2}+i y\right) R_{k}\left(\frac{1}{2}+i y\right)+R_{k}\left(\frac{1}{2}+i y\right)^{2}-R_{2 k}\left(\frac{1}{2}+i y\right)<8\left|R_{k}\left(\frac{1}{2}+i y\right)\right|<8\left(\frac{9+12 y}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}\right)$ by Lemma 3.1.

Lemma 3.3. For all $\frac{\sqrt{3}}{2} \leq y_{m}=\frac{\tan \left(\theta_{m}\right)}{2} \leq c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_{0} \leq \frac{1}{\sqrt{8}}$ with $\theta_{m}=\frac{m \pi}{k}$ where $m \in \mathbb{Z}$ such that $\left\lceil\frac{k}{3}\right\rceil<m<\frac{k}{2}-n$, the absolute value of the main term $\left\lvert\, M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)^{2}\right.$ is at least $\frac{4\left(\frac{1}{4}+y_{m}^{2}{ }^{\frac{k}{2}}-2\right.}{\left(\frac{1}{4}+y_{m}^{2}\right)^{k}}$.

Proof. If we rewrite $\frac{1}{2}+i y_{m}=r e^{i \theta_{m}}$, then
$M_{k}\left(r e^{i \theta_{m}}\right)^{2}-M_{2 k}\left(r e^{i \theta_{m}}\right)^{2}=\left(1+\frac{1}{\left(r e^{i \theta_{m}}\right)^{k}}+\frac{1}{\left(r e^{i\left(\pi-\theta_{m}\right)}\right)^{k}}\right)^{2}-\left(1+\frac{1}{\left(r e^{i \theta_{m}}\right)^{2 k}}+\frac{1}{\left(r e^{i\left(\pi-\theta_{m}\right)}\right)^{2 k}}\right)$

$$
\begin{align*}
& =\frac{2}{\left(r e^{i \theta_{m}}\right)^{k}}+\frac{2}{\left(r e^{i\left(\pi-\theta_{m}\right)}\right)^{k}}+\frac{2}{\left(r e^{i \theta_{m}}\right)^{k}\left(r e^{i\left(\pi-\theta_{m}\right)}\right)^{k}} \tag{3.35}\\
& =\frac{2 r^{k}\left(e^{i(\pi-\theta) k}+e^{i \theta k}\right)+2}{\left(r e^{i \theta k}\right)\left(r^{k} e^{i \pi k} e^{-i \theta k}\right)} \tag{3.36}\\
& =\frac{2 r^{k}\left(e^{i \pi k} e^{-i \theta k}+e^{i \theta k}\right)+2}{r^{2 k}\left(e^{i \theta k} e^{-i \theta k}\right)} \tag{3.37}\\
& =\frac{4 r^{k} \cos (\theta k)+2}{r^{2 k}} \tag{3.38}
\end{align*}
$$

and for our points, $\cos \left(\theta_{m} k\right)=\cos \left(\frac{m \pi}{k} k\right)=\cos (m \pi)=(-1)^{m}$ so

$$
\begin{align*}
\left|M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)^{2}\right| & =\left|\frac{4 r^{k}(-1)^{m}+2}{r^{2 k}}\right| \tag{3.39}\\
& \geq \frac{4 r^{k}-2}{r^{2 k}} \tag{3.40}
\end{align*}
$$

Converting back from polar coordinates gives us $r^{k}=\left(\frac{1}{4}+y_{m}^{2}\right)^{\frac{k}{2}}$ so

$$
\begin{equation*}
\left|M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)^{2}\right| \geq \frac{4\left(\frac{1}{4}+y_{m}^{2}\right)^{\frac{k}{2}}-2}{\left(\frac{1}{4}+y_{m}^{2}\right)^{k}} \tag{3.42}
\end{equation*}
$$

Lemma 3.4. For all y_{m} as defined previously, $\frac{4\left(\frac{1}{4}+y_{m}^{2}\right)^{\frac{k}{2}}-2}{\left(\frac{1}{4}+y_{m}^{2}\right)^{k}}$ is strictly greater than $8\left(\frac{9+12 y_{m}}{\left(\frac{9}{4}+y_{m}^{2}\right)^{\frac{k}{2}}}\right)$.
Proof. We simplify the desired inequality:

$$
\begin{equation*}
\frac{4\left(\frac{1}{4}+y_{m}^{2}\right)^{\frac{k}{2}}-2}{\left(\frac{1}{4}+y_{m}^{2}\right)^{k}}>\frac{72+96 y_{m}}{\left(\frac{9}{4}+y_{m}^{2}\right)^{\frac{k}{2}}} \Rightarrow \frac{1}{\left(\frac{1}{4}+y_{m}^{2}\right)^{\frac{k}{2}}}-\frac{1}{2\left(\frac{1}{4}+y_{m}^{2}\right)^{\frac{k}{2}}}>\frac{18+24 y_{m}}{\left(\frac{9}{4}+y_{m}^{2}\right)^{\frac{k}{2}}} \Rightarrow\left(\frac{\frac{9}{4}+y_{m}^{2}}{\frac{1}{4}+y_{m}^{2}}\right)^{\frac{k}{2}}>19+24 y_{m} \tag{3.43}
\end{equation*}
$$

Notice that for all y_{m} in our range, $\left(\frac{38}{\sqrt{3}}+24\right) y_{m} \geq 19+24 y_{m}$ so we let $c_{2}=\frac{38}{\sqrt{3}}+24$ to get

$$
\begin{equation*}
\left(\frac{\frac{9}{4}+y_{m}^{2}}{\frac{1}{4}+y_{m}^{2}}\right)^{\frac{k}{2}}>c_{2} y_{m} \tag{3.44}
\end{equation*}
$$

This simplifies further to

$$
\begin{equation*}
\frac{k}{2} \log \left(\frac{\frac{9}{4}+y_{m}^{2}}{\frac{1}{4}+y_{m}^{2}}\right)>\log \left(c_{2} y_{m}\right) \Rightarrow \frac{k}{2} \log \left(1+\frac{2}{\frac{1}{4}+y_{m}^{2}}\right)>\log \left(c_{2} y_{m}\right) \tag{3.45}
\end{equation*}
$$

and for all y_{m} in our range, it is the case that $\log \left(1+\frac{2}{\frac{1}{4}+y_{m}^{2}}\right) \geq \frac{1}{\frac{1}{4}+y_{m}^{2}}$.
This gives us

$$
\begin{equation*}
k>2\left(\frac{1}{4}+y_{m}^{2}\right) \log \left(c_{2} y_{m}\right) \tag{3.46}
\end{equation*}
$$

Since $y_{m} \leq c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$,

$$
\begin{equation*}
2\left(\frac{1}{4}+y_{m}^{2}\right) \log \left(c_{2} y_{m}\right) \leq 2\left(\frac{1}{4}+c_{0}^{2} \frac{k}{\log k}\right) \log \left(c_{2} c_{0} \frac{k}{\log k}\right) \tag{3.47}
\end{equation*}
$$

so we need

$$
\begin{equation*}
k>2\left(\frac{1}{4}+c_{0}^{2} \frac{k}{\log k}\right) \log \left(c_{2} c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}\right) \tag{3.48}
\end{equation*}
$$

Notice that $c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$ and let $k \geq c_{2}$. This gives us

$$
\begin{equation*}
k>2\left(\frac{1}{4}+c_{0}^{2} \frac{k}{\log k}\right) \log \left(k^{2}\right)=4\left(\frac{1}{4}+c_{0}^{2} \frac{k}{\log k}\right) \log (k) \tag{3.49}
\end{equation*}
$$

which brings us to two cases.
Case 1: If $\frac{1}{4}>\frac{c_{0}^{2} k}{\log k}$, we have $\left(\frac{1}{4}+\frac{c_{0}^{2} k}{\log k}\right)<\frac{1}{2}$ and so

$$
\begin{align*}
& k>4\left(\frac{1}{2}\right) \log (k) \tag{3.50}\\
& k>2 \log (k) \tag{3.51}
\end{align*}
$$

which is true for all k.
Case 2: If $\frac{1}{4} \leq \frac{c_{0}^{2} k}{\log k}$, then $\left(\frac{1}{4}+\frac{c_{0}^{2} k}{\log k}\right) \leq \frac{2 c_{0}^{2} k}{\log k}$ and so

$$
\begin{equation*}
k>4\left(\frac{2 c_{0}^{2} k}{\log k}\right) \log (k)=8 c_{0}^{2} k \tag{3.52}
\end{equation*}
$$

which is true for all k with $c_{0} \leq \frac{1}{\sqrt{8}}$.
Thus in both cases, the inequality holds for all k, letting us conclude that for all y_{m} in our range, $\frac{4\left(\frac{1}{4}+y_{m}^{2}\right)^{\frac{k}{2}}-2}{\left(\frac{1}{4}+y_{m}^{2}\right)^{k}}$ is strictly greater than $8\left(\frac{9+12 y_{m}}{\left(\frac{9}{4}+y_{m}^{2}\right)^{\frac{k}{2}}}\right)$.

Recall that we set $k \geq c_{2}$, so the following holds for $k \geq 46=\left\lceil c_{2}\right\rceil$. Combining our results from Lemmas 3.2, 3.3, and 3.4, we conclude that $\left|M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)\right|$ is strictly greater than $\left|2 M_{k}\left(\frac{1}{2}+i y_{m}\right) R_{k}\left(\frac{1}{2}+i y_{m}\right)+R_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-R_{2 k}\left(\frac{1}{2}+i y_{m}\right)\right|$. This allows us to use $M_{k}\left(\frac{1}{2}+i y_{m}\right)-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)$ as an approximation for $\Delta_{k, k}\left(\frac{1}{2}+i y_{m}\right)$.

From (3.38) we know $M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)=M_{k}\left(r e^{i \theta_{m}}\right)^{2}-M_{2 k}\left(r e^{i \theta_{m}}\right)=\frac{4 r^{k}(-1)^{m}+2}{r^{2 k}}$. Since $\left\lceil\frac{k}{3}\right\rceil \leq m<\frac{k}{2}-n$ and there are $\frac{k}{6}-n$ integers in $\left\lceil\left\lceil\frac{k}{3}\right\rceil, \frac{k}{2}-n\right]$, we have shown that $M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)$ exhibits $\frac{k}{6}-n$ sign changes, and thus has $\frac{k}{6}-(1+n)$ zeros. Since this function adequately approximates $\Delta_{k, k}$, it follows that $\Delta_{k, k}$ has $\frac{k}{6}-(1+n)$ zeros on the line $x=\frac{1}{2}$. This concludes our proof.

4. Future work: the General Case for $\Delta_{k, l}$

With time, we hope to obtain similar results for the general case of $\Delta_{k, l}$ - when $k \neq l$. Observe that $\Delta_{k, l}=\Delta_{l, k}$ so let us work with $k>l$. If we write $\Delta_{k, l}$ by using our $E_{k}=M_{k}+R_{k}$ substitution, we have $\Delta_{k, l}=M_{k} M_{l}+R_{k} M_{l}+R_{l} M_{k}+R_{k} R_{l}-M_{k+l}-R_{k+l}$, with a proposed main term

$$
\begin{align*}
M_{k}\left(r e^{i \theta}\right) M_{l}\left(r e^{i \theta}\right)-M_{k+l}\left(r e^{i \theta}\right) & =\left(\frac{r^{2 k}+r^{k} 2 \cos (\theta k)}{r^{2 k}}\right)\left(\frac{r^{2 l}+r^{l} 2 \cos (\theta l)}{r^{2 l}}\right)-\left(\frac{r^{2(k+l)}+r^{(k+l)} 2 \cos (\theta(k+l))}{r^{2(k+l)}}\right) \tag{4.1}\\
& =\frac{r^{2 l+k} 2 \cos (\theta k)+r^{2 k+l} 2 \cos (\theta l)+r^{k+l} 2 \cos (\theta(k-l))}{r^{2(k+l)}} \tag{4.2}
\end{align*}
$$

Since $k>l$, we suspect that the second term $r^{2 k+l} 2 \cos (\theta l)$ will contribute most to the value of the function. Thus we choose points $r e^{i \theta_{m}}$ for $\theta_{m}=\frac{m \pi}{l}$ for $\left\lceil\frac{l}{3}\right\rceil \leq m<\frac{l}{2}$, analogous to our points in the case of $\Delta_{k, k}$. If we rewrite $k=l+d$, our main term becomes

$$
\begin{align*}
& \frac{r^{3 l+d} 2 \cos \left(\theta_{m}(l+d)\right)+r^{3 l+2 d} 2 \cos \left(\theta_{m} l\right)+r^{2 l+d} 2 \cos \left(\theta_{m} d\right)}{r^{4 l+2 d)}} \tag{4.3}\\
& \quad=\frac{r^{3 l+d} 2 \cos (m l) \cos \left(\frac{m \pi}{l} d\right)+r^{3 l+2 d} 2 \cos (m l)+r^{2 l+d} 2 \cos \left(\frac{m \pi}{l} d\right)}{r^{4 l+2 d)}} \\
& \quad=\frac{r^{3 l+d} 2(-1)^{m} \cos \left(\frac{m \pi}{l} d\right)+r^{3 l+2 d} 2(-1)^{m}+r^{2 l+d} 2 \cos \left(\frac{m \pi}{l} d\right)}{r^{4 l+2 d}}
\end{align*}
$$

We would like to show that $\left|r^{3 l+2 d} 2(-1)^{m}\right|>\left|r^{3 l+d} 2(-1)^{m} \cos \left(\frac{m \pi}{l} d\right)+r^{2 l+d} 2 \cos \left(\frac{m \pi}{l} d\right)\right|$ by having separate cases for $d \equiv 0,2,4(\bmod 6)$. This is a result of $\cos \left(\frac{m \pi}{l} d\right)$ taking on different values depending on what d is $(\bmod 6)$. In these three cases, we also want to find a lower bound on $\left|M_{k}\left(\frac{1}{2}+i y_{m}\right) M_{l}\left(\frac{1}{2}+i y_{m}\right)-M_{k+l}\left(\frac{1}{2}+i y_{m}\right)\right|$.

We believe $\left|R_{k} M_{l}+R_{l} M_{k}+R_{k} R_{l}-R_{k+l}\right|<8\left|M_{l}\right|<8\left(\frac{9+12 y_{m}}{\left(\frac{9}{4}+y_{m}^{2}\right)^{\frac{l}{2}}}\right)$. By following the method of proof for $\Delta_{k, k}$, we hope to prove that $\Delta_{k, l}$ has $\left\lfloor\frac{l}{6}\right\rfloor-(1+n)$ zeros on the line $x=\frac{1}{2}$, a modified version of Conjecture 1.2. Here, n is the number of zeros of the form $x+i y$ for $y>c_{0} \frac{\sqrt{l}}{\sqrt{\log \ell}}$ for $c_{0} \leq \frac{1}{\sqrt{8}}$.

This conjecture came from plotting the zeros of $\Delta_{k, l}$ in Mathematica and observing several patterns. Let $B_{k, l}$ be the number of zeros of the form $\frac{1}{2}+i y \in \mathcal{F}$ that $\Delta_{k, l}$. Then we compile a chart of $B_{k, l}$ for $10 \leq k, l \leq 100$, displayed below.

Each entry corresponds to $B_{k, l}$ for $\Delta_{k, l}$ where the diagonal line connects $B_{k, k}$. We observe that for fixed $l, B_{k, l}$ stabilizes to $\left\lceil\frac{l}{6}\right\rceil-1$. The circles correspond to when $B_{k, l}$ stabilizes for $l \equiv 4(\bmod 6)$, while the triangles correspond to when $B_{k, l}$ stabilizes for $l \equiv 0(\bmod 6)$. This leads us to several patterns that result in conjectures expanding on Conjecture 1.2:

Conjecture 4.1. For fixed $l \equiv 4(\bmod 6), \Delta_{k, l}$ has $\left\lceil\frac{l}{6}\right\rceil-1$ zeros on the line $x=\frac{1}{2}$ if $k \geq k_{0}$. Evidence suggests that $k_{0} \leq l+18\left(\left\lfloor\frac{l}{6}\right\rfloor\right)$.

Conjecture 4.2. For fixed $l \equiv 0(\bmod 6), \Delta_{k, l}$ has $\frac{l}{6}-1$ zeros on the line $x=\frac{1}{2}$ if $k \geq l+4+6\left(\frac{l-1}{6}(\bmod 3)\right)$ or $k-l \equiv 0,4(\bmod 6)$. Otherwise, $\Delta_{k, l}$ has $\frac{l}{6}-2$ zeros on the line $x=\frac{1}{2}$.

Conjecture 4.3. For fixed $l \equiv 2(\bmod 6), \Delta_{k, l}$ has $\left\lfloor\frac{l}{6}\right\rfloor-1$ zeros on the line $x=\frac{1}{2}$ for all $k \geq l$.

We hope to prove a weaker version of Conjecture 1.2, one that is analogous to Theorem 1.3 for general k, l :

Conjecture 4.4. The modular form $\Delta_{k, l}$ has at least $\left\lfloor\frac{l}{6}\right\rfloor-(1+n)$ zeros in \mathcal{F} that lie on the line $x=\frac{1}{2}$ where n is the number of zeros of the form $\frac{1}{2}+i y$ with $y>c_{0} \frac{\sqrt{l}}{\sqrt{\log l}}$.

Lastly, we would like to find an exact value for n. So far, we suspect $n \approx \frac{\sqrt{l}}{6}$. This will give an exact number for how many zeros we can prove the location of, both in the case of $\Delta_{k, k}$ and $\Delta_{k, l}$.

References

[RS] F. K. C. Rankin, H. P. F Swinnerton-Dyer, On the zeros of Eisenstein series. Bull. London Math. Soc. 2 1970, 169-170.
[Z] D. Zagier, Elliptic modular forms and their applications. The 1-2-3 of modular forms, 1-103, Universitext, Springer, Berlin, 2008.
E-mail address: pvulakh@gmail.com

