
ZEROS OF THE MODULAR FORM ∆k,l = EkEl − Ek+l

POLINA VULAKH

Abstract. We define ∆k,l to be the modular form EkEl +Ek+l of weight k+ l where Ek is
the Eisenstein series of weight k and study the location of zeros of ∆k,l in F , the standard
fundamental domain. We conjecture that all of its zeros are located on the bottom arc of
F and on the lines x = ± 1

2 .

1. Introduction

Rankin and Swinnerton-Dyer proved that all zeros of Ek in the fundamental domain F lie
on the arc |z| = 1 [RS]. We study the location of the zeros of the modular form ∆k,l in F .

Conjecture 1.1. The zeros of ∆k,l in F lie on the boundary B = {z = x + iy ∈ F|x =
±1

2
or |z| = 1}.

Conjecture 1.2. The modular form ∆k,l has at least b l
6
c − 1 zeros on the line x = 1

2
.

Theorem 1.3. The modular form ∆k,k has at least bk
6
c − (1 + n) zeros in F that lie on the

line x = 1
2

where n is the number of zeros of the form 1
2

+ iy for y > c0
√
k√

log k
for c0 ≤ 1√

8
.

2. Background

This material is standard in the theory of modular forms. We use [Z] as reference, while
there are many others that would suffice.

The group action of SL2(R) on H = {z ∈ C|Im(z) > 0} is defined by z 7→ γ(z) where

for γ =

[
a b
c d

]
∈ SL2(R), γ(z) = az+b

cz+d
. We extend this to H∪{∞}∪Q such that γ(∞) = a

c
.

A complex-valued function f is a modular form if it is holomorphic for every point
z ∈ H ∪ {∞} ∪ Q and satisfies the transformation law f(γ(z)) = f(az+b

cz+d
) = (cz + d)kf(z)

for all z ∈ H ∪ {∞} ∪Q, all γ ∈ SL2(Z), and some k ∈ Z. Typically, k is positive and even
since the only modular forms of weight 0 are constant functions, the only modular form of
odd weight is the 0-function, and there are no modular forms of negative weight.

Two elements z1, z2 ∈ H∪{∞}∪Q are SL2(Z)-equivalent if there exists some γ ∈ SL2(Z)
such that γ(z1) = z2.

There exist infinitely many SL2(Z)-equivalent regions of H, one being the fundamental
domain. This is denoted as F = {z = x+ iy ∈ H : x ∈ (−1

2
, 1
2
), |z| ≥ 1}. If we are concerned

with locating the zeros of a modular form, it suffices to locate unique zeros up to SL2(Z)
equivalence. Thus we look for zeros in F . Note that the lines x = −1

2
and x = 1

2
are SL2(Z)-

equivalent, as are the two sides of the arc |z| = 1, x ∈ [−1
2
, 0] and |z| = 1, x ∈ [0,−1

2
] so it

suffices to consider only one of each.
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The valence formula

(2.1)
1

2
vi(f) +

1

3
vρ(f) +

∑
z 6=i,ρ
z∈H

vz(f) =
k

12

tells us that a modular form f of weight k has precisely k
12

zeros.

The Eisenstein series of weight k for z ∈ H ∪ {∞}, k ≥ 4 is defined by

(2.2) Ek(z) =
1

2

∑
(c,d)=1
c,d∈Z

1

(cz + d)k

with a corresponding normalized Fourier expansion, Ek(z) = 1 − 2k
Bk

∞∑
n=1

σk−1(n)e2πinz where

Bk denotes the kth Bernoulli number.

3. Proof of Theorem 1.3

For k, l ≥ 4, we focus on the modular form of weight k + l, Ek(z)El(z) − Ek+l(z),
and its zeros. Note that this is a cusp form for all k, l and that E(1

2
+ iy) ∈ R, so

Ek(
1
2

+ iy)El(
1
2

+ iy) − Ek+l(
1
2

+ iy) ∈ R as well. When k = l = 4, EkEl − Ek+l = 0
since E2

4 = E8. Thus for the k = l case, we focus on k ≥ 6.

We want to approximate Ek(
1
2

+iy)2−E2k(
1
2

+iy) and use the resulting function to exhibit

bk
6
c sign changes, showing that E2

k −E2k has bk
6
c− 1 zeros on the line x = 1

2
. Unfortunately,

our method only works up to y ≤ c0
√
k√

log k
for c0 ≤ 1√

8
, so we define n to be the number of

zeros of the form z = 1
2

+ iy with y > c0
√
k√

log k
of E2

k −E2k. Working with y in our range, we

instead prove bk
6
c − (1 + n) zeros.

The points we will use are of the form z = 1
2

+ iym where ym = tan(θm)
2

for θm = mπ
k

where m ∈ Z such that dk
3
e ≤ m < k

2
− n. If we rewrite Ek = Mk + Rk, then E2

k −
E2k = M2

k −M2k + 2MkRk + R2
k − R2k. Then we wish to show |Mk(

1
2

+ iym) −M2k(
1
2

+

iym)| > |2Mk(
1
2

+ iym)Rk(
1
2

+ iym) + Rk(
1
2

+ iym)2 − R2k(
1
2

+ iym)|. In order to do this, we

need to bound |2Mk(
1
2

+ iym)Rk(
1
2

+ iym) + Rk(
1
2

+ iym)2 − R2k(
1
2

+ iym)| from above and

|Mk(
1
2

+ iym) −M2k(
1
2

+ iym)| from below, the first of which requires bounding |Rk| on its
own.

Lemma 3.1. For all
√
3
2
≤ y ≤ c0

√
k√

log k
for c0 ≤ 1√

8
, the absolute value of the remainder

term |Rk(
1
2

+ iy)| is less than 9+12y

(
9
4
+y2)

k
2

.

Proof. Write Ek(
1
2

+ iy) = Mk(
1
2

+ iy) +Rk(
1
2

+ iy) where

(3.1) Mk(
1
2

+ iy) = 1 +
1

(1
2

+ iy)k
+

1

(−1
2

+ iy)k︸ ︷︷ ︸
c2+d2=1,2 except for (c,d) where c=1,d=1 and c=−1,d=−1
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and

(3.2) Rk(
1
2

+ iy) =
1

(3
2

+ iy)k︸ ︷︷ ︸
c=1,d=1 and c=−1,d=−1

+
1

2

∑
(c,d)=1,c2+d2≥5

c,d∈Z

1

(c(1
2

+ iy) + d)k

Then |Rk(
1
2

+ iy)| = 1

( 9
4
+y2)

k
2

+
∣∣∣12 ∑
c2+d2≥5
(c,d)=1
c,d∈Z

1
(c( 1

2
+iy)+d)k

∣∣∣.
Rewrite
(3.3)∣∣∣1
2

∑
c2+d2≥5
(c,d)=1
c,d∈Z

1

(c(1
2

+ iy) + d)k

∣∣∣ =
1

(4 + 4y2)
k
2

+
1

(4y2)
k
2

+
1

(25
4

+ y2)
k
2︸ ︷︷ ︸

c2+d2=5

+
1

2

∑
c2+d2≥10

(c,d)=1
c,d∈Z

1

(( c
2

+ d)2 + c2y2)
k
2

︸ ︷︷ ︸
Tk(

1
2
+iy)

and observe that (c, d) and (−c,−d) yield identical terms. Then we sum over positive c only,
eliminating the coefficient of 1

2
. Similarly, for fixed c, the terms for (c, d) and (c,−(d + c))

yield idential terms as well. This lets us sum over positive d for each c, accounting for the
lack of symmetry when c = 1 and c = 2. For simplicity, we drop the coprime condition on c
and d.
Then

(3.4) Tk(
1

2
+ iy) =

∞∑
c=1

∞∑
d≥1

c2+d2≥10

1

(( c
2

+ d)2 + c2y2)
k
2

+
1

(( c
2
− d)2 + c2y2)

k
2

and we proceed by finding an upper bound for each fixed c. Due to the isolated terms not
included in Tk(

1
2

+ iy), c = 1 and c = 2 must be bounded separately.
For c = 1 we have

∞∑
d≥1

1+d2≥10

1

(( 1
2
+ d)2 + y2)

k
2

+
1

(( 1
2
− d)2 + y2)

k
2

=
1

( 5
2
+ y2)

k
2

+ 2

∞∑
d=3

1

(( 1
2
+ d)2 + y2)

k
2

(3.5)

≤
1

( 5
2
+ y2)

k
2

+ 2
( 1

(( 1
2
+ 3)2 + y2)

k
2

+

∫ ∞
3

1

(( 1
2
+ x)2 + y2)

k
2

dx
)

(3.6)

≤
1

( 5
2
+ y2)

k
2

+ 2
( 1

(( 1
2
+ 3)2 + y2)

k
2

+

∫ y+ 1
2

3

1

(( 1
2
+ x)2 + y2)

k
2

dx+

∫ ∞
y+ 1

2

1

(( 1
2
+ x)2 + y2)

k
2

dx
)

(3.7)

<
1

( 5
2
+ y2)

k
2

+ 2
( 1

(( 1
2
+ 3)2 + y2)

k
2

+

∫ y+ 1
2

3

1

( 1
2
+ 3)2 + y2)

k
2

dx

︸ ︷︷ ︸
1
2
+x≤y

+

∫ ∞
y+ 1

2

1

(( 1
2
+ x)2)

k
2

dx

︸ ︷︷ ︸
1
2
+x>y

)
(3.8)

<
1

( 5
2
+ y2)

k
2

+
2 + 2y

( 49
4

+ y2)
k
2

+
2

(k − 1)(y + 1)k−1
(3.9)

Similarly,
(3.10)
∞∑
d≥1

4+d2≥10

1

((1 + d)2 + 4y2)
k
2

+
1

((1− d)2 + 4y2)
k
2

=
1

(4 + 4y2)
k
2︸ ︷︷ ︸

d=−3

+
1

(9 + 4y2)
k
2︸ ︷︷ ︸

d=−4

+2
∞∑
d=3

1

((1 + d)2 + 4y2)
k
2
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where

2

∞∑
d=3

1

((1 + d)2 + 4y2)
k
2

≤ 2
( 1

((1 + 3)2 + 4y2)
k
2

+

∫ ∞
3

1

((1 + x)2 + 4y2)
k
2

dx
)

(3.11)

= 2
( 1

(16 + 4y2)
k
2

+

∫ 2y−1

3

1

((1 + x)2 + 4y2)
k
2

dx+

∫ ∞
2y−1

1

((1 + x)2 + 4y2)
k
2

dx
)

(3.12)

< 2
( 1

(16 + 4y2)
k
2

+

∫ 2y−1

3

1

(4y2)
k
2

dx︸ ︷︷ ︸
x+1≤2y

+

∫ ∞
2y−1

1

((1 + x)2)
k
2

dx︸ ︷︷ ︸
x+1>2y

)
(3.13)

<
2

(16 + 4y2)
k
2

+
3

(2y)k−1
(3.14)

which totals to 1

(4+4y2)
k
2

+ 1

(9+4y2)
k
2

+ 2

(16+4y2)
k
2

+ 3
(2y)k−1 for c = 2.

For general c ≥ 3,
(3.15)
∞∑
d≥1

c2+d2≥10

1

(( c
2
+ d)2 + c2y2)

k
2

+
1

(( c
2
− d)2 + c2y2)

k
2

= 2

∞∑
d=1

1

(( c
2
+ d)2 + c2y2)

k
2

≤ 4
( 1

(( c
2
+ 1−c

2
)2 + c2y2)

k
2

+

∫ ∞
1−c
2

1

(( c
2
+ x)2 + c2y2)

k
2

dx
)

if c is odd, and

(3.16) 2

∞∑
d=1

1

(( c
2
+ d)2 + c2y2)

k
2

≤ 4
( 1

(( c
2
+ 1− c

2
)2 + c2y2)

k
2

+

∫ ∞
1− c

2

1

(( c
2
+ x)2 + c2y2)

k
2

dx
)

if c is even. We bound odd c by even c to get

2

∞∑
d=1

1

(( c
2
+ d)2 + c2y2)

k
2

≤ 4
( 1

(( c
2
+ 1−c

2
)2 + c2y2)

k
2

+

∫ ∞
1−c
2

1

(( c
2
+ x)2 + c2y2)

k
2

dx
)

(3.17)

< 4
( 1

( 1
4
+ c2y2)

k
2

+

∫ ∞
0

1

(( 1
2
+ x)2 + c2y2)

k
2

dx
)

(3.18)

= 4
( 1

( 1
4
+ c2y2)

k
2

+
(∫ cy− 1

2

0

1

(( 1
2
+ x)2 + c2y2)

k
2

dx+

∫ ∞
cy− 1

2

1

(( 1
2
+ x)2 + c2y2)

k
2

dx
)

(3.19)

< 4
( 1

( 1
4
+ c2y2)

k
2

+
(∫ cy− 1

2

0

1

(c2y2)
k
2

dx︸ ︷︷ ︸
x+ 1

2
≤cy

+

∫ ∞
cy− 1

2

1

(( 1
2
+ x)2)

k
2

dx

︸ ︷︷ ︸
x+ 1

2
>cy

)
(3.20)

<
4

( 1
4
+ c2y2)

k
2

+ (4 +
4

k − 1
)

1

(cy)k−1
(3.21)

Summing over all fixed c ≥ 3 gives us

∞∑
c=3

( 4

( 1
4 + c2y2)

k
2

+
4

(cy)k−1
+

4

(k − 1)(cy)k−1

)
<

4

( 1
4 + 9y2)

k
2

+
4

(3y)k−1
+

4

(k − 1)(3y)k−1
+

∫ ∞
3

( 1

( 1
4 + x2y2)

k
2

+
1

(xy)k−1
+

1

(k − 1)(xy)k−1
dx
)(3.22)

<
4

( 1
4 + 9y2)

k
2

+
4 + 4

k−1

(3y)k−1
+

8 + 4
k−1

(k − 2)3k−2yk−1
<

4

( 1
4 + 9y2)

k
2

+
11

(3y)k−1
(3.23)

which, combined with our upper bounds for c = 1, c = 2 gives us

(3.24)

Tk(
1

2
+ iy) <

1

(5
2

+ y2)
k
2

+
2 + 2y

(49
4

+ y2)
k
2

+
2

(k − 1)(y + 1)k−1
+

1

(4 + 4y2)
k
2

+
1

(9 + 4y2)
k
2

+

2

(16 + 4y2)
k
2

+
3

(2y)k−1
+

4

(1
4

+ 9y2)
k
2

+
11

(3y)k−1
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and

|Rk(
1
2

+ iy)| < 1

(9
4

+ y2)
k
2

+
1

(4 + 4y2)
k
2

+
1

(4y2)
k
2

+
1

(25
4

+ y2)
k
2

+
1

(5
2

+ y2)
k
2

+
2 + 2y

(49
4

+ y2)
k
2

(3.25)

+
2

(k − 1)(y + 1)k−1
+

1

(4 + 4y2)
k
2

+
1

(9 + 4y2)
k
2

+
2

(16 + 4y2)
k
2

(3.26)

+
3

(2y)k−1
+

4

(1
4

+ 9y2)
k
2

+
11

(3y)k−1
(3.27)

<
4

(9
4

+ y2)
k
2

+
10

(4y2)
k
2

+
2y

(49
4

+ y2)
k
2

+
2y+2
k−1

(y2 + 2y + 1)
k
2

+
6y

(4y2)
k
2

+
33y

(9y2)
k
2

(3.28)

<
7

(9
4

+ y2)
k
2

+
12y + 2

(49
4

+ y2)
k
2

<
9 + 12y

(9
4

+ y2)
k
2

(3.29)

�

Thus for any z ∈ H of the form 1
2

+ iy, |Rk(
1
2

+ iy)| < 9+12y

(
9
4
+y2)

k
2

.

Lemma 3.2. For all
√
3
2
≤ y ≤ c0

√
k√

log k
for c0 ≤ 1√

8
, the absolute value of the main term

|2Mk(
1
2

+ iy)Rk(
1
2

+ iy) +Rk(
1
2

+ iy)2 −R2k(
1
2

+ iy)| is strictly less than 8
(

9+12y

(
9
4
+y2)

k
2

)
.

Proof. Recall that Mk(
1
2

+ iy) = 1 + 1

(
1
2
+iy)k

+ 1

(−1
2
+iy)k

, so |Mk(
1
2

+ iy)| ≤ 1 + | 1

(
1
2
+iy)k
| +

| 1

(−1
2
+iy)k
| ≤ 3 and |Rk(

1
2

+ iy)| < 9+12y

(
9
4
+y2)

k
2

which is decreasing in k. Then

|2Mk(
1
2

+ iy)Rk(
1
2

+ iy) +Rk(
1
2

+ iy)2 −R2k(
1
2

+ iy)| ≤ 2|Mk(
1
2

+ iy)||Rk(
1
2

+ iy)|+ |Rk(
1
2

+ iy)|2
(3.30)

+ |R2k(
1
2

+ iy)|(3.31)

< 6|Rk(
1
2

+ iy)|+ 2|Rk(
1
2

+ iy)|(3.32)

= 8|Rk(
1
2

+ iy)|(3.33)

which implies 2Mk(
1
2
+iy)Rk(

1
2
+iy)+Rk(

1
2
+iy)2−R2k(

1
2
+iy) < 8|Rk(

1
2
+iy)| < 8

(
9+12y

(
9
4
+y2)

k
2

)
by Lemma 3.1. �

Lemma 3.3. For all
√
3
2
≤ ym = tan(θm)

2
≤ c0

√
k√

log k
for c0 ≤ 1√

8
with θm = mπ

k
where m ∈ Z

such that dk
3
e < m < k

2
−n, the absolute value of the main term|Mk(

1
2
+iym)2−M2k(

1
2
+iym)2

is at least
4(

1
4
+y2m)

k
2−2

(
1
4
+y2m)k

.
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Proof. If we rewrite 1
2

+ iym = reiθm , then

Mk(re
iθm)2 −M2k(re

iθm)2 = (1 +
1

(reiθm)k
+

1

(rei(π−θm))k
)2 − (1 +

1

(reiθm)2k
+

1

(rei(π−θm))2k
)

(3.34)

=
2

(reiθm)k
+

2

(rei(π−θm))k
+

2

(reiθm)k(rei(π−θm))k
(3.35)

=
2rk(ei(π−θ)k + eiθk) + 2

(reiθk)(rkeiπke−iθk)
(3.36)

=
2rk(eiπke−iθk + eiθk) + 2

r2k(eiθke−iθk)
(3.37)

=
4rk cos(θk) + 2

r2k
(3.38)

and for our points, cos(θmk) = cos(mπ
k
k) = cos(mπ) = (−1)m so

|Mk(
1
2

+ iym)2 −M2k(
1
2

+ iym)2| =
∣∣∣4rk(−1)m + 2

r2k

∣∣∣(3.39)

≥ 4rk − 2

r2k
(3.40)

(3.41)

Converting back from polar coordinates gives us rk = (1
4

+ y2m)
k
2 so

(3.42) |Mk(
1
2

+ iym)2 −M2k(
1
2

+ iym)2| ≥
4(1

4
+ y2m)

k
2 − 2

(1
4

+ y2m)k

�

Lemma 3.4. For all ym as defined previously,
4(

1
4
+y2m)

k
2−2

(
1
4
+y2m)k

is strictly greater than 8
(

9+12ym

(
9
4
+y2m)

k
2

)
.

Proof. We simplify the desired inequality:

4(1
4

+ y2m)
k
2 − 2

(1
4

+ y2m)k
>

72 + 96ym

(9
4

+ y2m)
k
2

⇒ 1

(1
4

+ y2m)
k
2

− 1

2(1
4

+ y2m)
k
2

>
18 + 24ym

(9
4

+ y2m)
k
2

⇒
( 9

4
+ y2m

1
4

+ y2m

) k
2
> 19 + 24ym

(3.43)

Notice that for all ym in our range,
(

38√
3

+ 24)ym ≥ 19 + 24ym so we let c2 = 38√
3

+ 24 to get

(3.44)
( 9

4
+ y2m

1
4

+ y2m

) k
2
> c2ym

This simplifies further to

k

2
log
( 9

4
+ y2m

1
4

+ y2m

)
> log(c2ym)⇒ k

2
log
(

1 +
2

1
4

+ y2m

)
> log(c2ym)(3.45)

and for all ym in our range, it is the case that log(1 + 2
1
4
+y2m

) ≥ 1
1
4
+y2m

.

This gives us

(3.46) k > 2(1
4

+ y2m) log(c2ym)
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Since ym ≤ c0
√
k√

log k
,

(3.47) 2(1
4

+ y2m) log(c2ym) ≤ 2(1
4

+ c20
k

log k
) log(c2c0

k
log k

)

so we need

k > 2(1
4

+ c20
k

log k
) log(c2c0

√
k√

log k
)(3.48)

Notice that c0
√
k√

log k
and let k ≥ c2. This gives us

k > 2(1
4

+ c20
k

log k
) log(k2) = 4(1

4
+ c20

k
log k

) log(k)(3.49)

which brings us to two cases.

Case 1: If 1
4
>

c20k

log k
, we have

(
1
4

+
c20k

log k

)
< 1

2
and so

k > 4(1
2
) log(k)(3.50)

k > 2 log(k)(3.51)

which is true for all k.
Case 2: If 1

4
≤ c20k

log k
, then

(
1
4

+
c20k

log k

)
≤ 2c20k

log k
and so

k > 4(
2c20k

log k
) log(k) = 8c20k,(3.52)

which is true for all k with c0 ≤ 1√
8
.

Thus in both cases, the inequality holds for all k, letting us conclude that for all ym in our

range,
4(

1
4
+y2m)

k
2−2

(
1
4
+y2m)k

is strictly greater than 8
(

9+12ym

(
9
4
+y2m)

k
2

)
. �

Recall that we set k ≥ c2, so the following holds for k ≥ 46 = dc2e. Combining our results
from Lemmas 3.2, 3.3, and 3.4, we conclude that |Mk(

1
2

+ iym)2 −M2k(
1
2

+ iym)| is strictly

greater than |2Mk(
1
2

+ iym)Rk(
1
2

+ iym) + Rk(
1
2

+ iym)2 − R2k(
1
2

+ iym)|. This allows us to

use Mk(
1
2

+ iym)−M2k(
1
2

+ iym) as an approximation for ∆k,k(
1
2

+ iym).

From (3.38) we know Mk(
1
2
+iym)2−M2k(

1
2
+iym) = Mk(re

iθm)2−M2k(re
iθm) = 4rk(−1)m+2

r2k
.

Since dk
3
e ≤ m < k

2
− n and there are k

6
− n integers in [dk

3
e, k

2
− n], we have shown that

Mk(
1
2

+ iym)2 −M2k(
1
2

+ iym) exhibits k
6
− n sign changes, and thus has k

6
− (1 + n) zeros.

Since this function adequately approximates ∆k,k, it follows that ∆k,k has k
6
− (1 + n) zeros

on the line x = 1
2
. This concludes our proof.

4. Future work: the General Case for ∆k,l

With time, we hope to obtain similar results for the general case of ∆k,l - when k 6= l.
Observe that ∆k,l = ∆l,k so let us work with k > l. If we write ∆k,l by using our Ek = Mk+Rk

substitution, we have ∆k,l = MkMl +RkMl +RlMk +RkRl −Mk+l −Rk+l, with a proposed
main term

Mk(re
iθ)Ml(re

iθ)−Mk+l(re
iθ) =

( r2k+rk2 cos(θk)
r2k

)( r2l+rl2 cos(θl)
r2l

)
−
( r2(k+l)+r(k+l)2 cos(θ(k+l))

r2(k+l)

)(4.1)

=
r2l+k2 cos(θk) + r2k+l2 cos(θl) + rk+l2 cos(θ(k − l))

r2(k+l)
(4.2)
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Since k > l, we suspect that the second term r2k+l2 cos(θl) will contribute most to the value
of the function. Thus we choose points reiθm for θm = mπ

l
for d l

3
e ≤ m < l

2
, analogous to

our points in the case of ∆k,k. If we rewrite k = l + d, our main term becomes

(4.3)
r3l+d2 cos(θm(l + d)) + r3l+2d2 cos(θml) + r2l+d2 cos(θmd)

r4l+2d)

=
r3l+d2 cos(ml) cos(mπ

l
d) + r3l+2d2 cos(ml) + r2l+d2 cos(mπ

l
d)

r4l+2d)

=
r3l+d2(−1)m cos(mπ

l
d) + r3l+2d2(−1)m + r2l+d2 cos(mπ

l
d)

r4l+2d

We would like to show that |r3l+2d2(−1)m| > |r3l+d2(−1)m cos(mπ
l
d) + r2l+d2 cos(mπ

l
d)| by

having separate cases for d ≡ 0, 2, 4 (mod 6). This is a result of cos(mπ
l
d) taking on different

values depending on what d is (mod 6). In these three cases, we also want to find a lower
bound on |Mk(

1
2

+ iym)Ml(
1
2

+ iym)−Mk+l(
1
2

+ iym)|.

We believe |RkMl+RlMk+RkRl−Rk+l| < 8|Ml| < 8
(

9+12ym

(
9
4
+y2m)

l
2

)
. By following the method

of proof for ∆k,k, we hope to prove that ∆k,l has b l
6
c − (1 + n) zeros on the line x = 1

2
, a

modified version of Conjecture 1.2. Here, n is the number of zeros of the form x + iy for

y > c0
√
l√

log l
for c0 ≤ 1√

8
.

This conjecture came from plotting the zeros of ∆k,l in Mathematica and observing several
patterns. Let Bk,l be the number of zeros of the form 1

2
+ iy ∈ F that ∆k,l. Then we compile

a chart of Bk,l for 10 ≤ k, l ≤ 100, displayed below.

Each entry corresponds to Bk,l for ∆k,l where the diagonal line connects Bk,k. We observe
that for fixed l, Bk,l stabilizes to d l

6
e − 1. The circles correspond to when Bk,l stabilizes

for l ≡ 4 (mod 6), while the triangles correspond to when Bk,l stabilizes for l ≡ 0 (mod 6).
This leads us to several patterns that result in conjectures expanding on Conjecture 1.2:

Conjecture 4.1. For fixed l ≡ 4 (mod 6), ∆k,l has d l
6
e−1 zeros on the line x = 1

2
if k ≥ k0.

Evidence suggests that k0 ≤ l + 18(b l
6
c).

Conjecture 4.2. For fixed l ≡ 0 (mod 6), ∆k,l has l
6
− 1 zeros on the line x = 1

2
if

k ≥ l + 4 + 6( l−1
6

(mod 3)) or k − l ≡ 0, 4 (mod 6). Otherwise, ∆k,l has l
6
− 2 zeros

on the line x = 1
2
.
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Conjecture 4.3. For fixed l ≡ 2 (mod 6), ∆k,l has b l
6
c − 1 zeros on the line x = 1

2
for all

k ≥ l.

We hope to prove a weaker version of Conjecture 1.2, one that is analogous to Theorem
1.3 for general k, l:

Conjecture 4.4. The modular form ∆k,l has at least b l
6
c − (1 + n) zeros in F that lie on

the line x = 1
2

where n is the number of zeros of the form 1
2

+ iy with y > c0
√
l√

log l
.

Lastly, we would like to find an exact value for n. So far, we suspect n ≈
√
l

6
. This will

give an exact number for how many zeros we can prove the location of, both in the case of
∆k,k and ∆k,l.

References

[RS] F. K. C. Rankin, H. P. F Swinnerton-Dyer, On the zeros of Eisenstein series. Bull. London Math. Soc.
2 1970, 169–170.

[Z] D. Zagier, Elliptic modular forms and their applications. The 1-2-3 of modular forms, 1–103, Universi-
text, Springer, Berlin, 2008.

E-mail address: pvulakh@gmail.com


