ZEROS OF THE MODULAR FORM $\Delta_{k,l} = E_k E_l - E_{k+l}$

POLINA VULAKH

ABSTRACT. We define $\Delta_{k,l}$ to be the modular form $E_k E_l + E_{k+l}$ of weight k+l where E_k is the Eisenstein series of weight k and study the location of zeros of $\Delta_{k,l}$ in \mathcal{F} , the standard fundamental domain. We conjecture that all of its zeros are located on the bottom arc of \mathcal{F} and on the lines $x = \pm \frac{1}{2}$.

1. INTRODUCTION

Rankin and Swinnerton-Dyer proved that all zeros of E_k in the fundamental domain \mathcal{F} lie on the arc |z| = 1 [RS]. We study the location of the zeros of the modular form $\Delta_{k,l}$ in \mathcal{F} .

Conjecture 1.1. The zeros of $\Delta_{k,l}$ in \mathcal{F} lie on the boundary $\mathcal{B} = \{z = x + iy \in \mathcal{F} | x = \pm \frac{1}{2} \text{ or } |z| = 1\}.$

Conjecture 1.2. The modular form $\Delta_{k,l}$ has at least $\lfloor \frac{l}{6} \rfloor - 1$ zeros on the line $x = \frac{1}{2}$.

Theorem 1.3. The modular form $\Delta_{k,k}$ has at least $\lfloor \frac{k}{6} \rfloor - (1+n)$ zeros in \mathcal{F} that lie on the line $x = \frac{1}{2}$ where n is the number of zeros of the form $\frac{1}{2} + iy$ for $y > c_0 \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_0 \leq \frac{1}{\sqrt{8}}$.

2. Background

This material is standard in the theory of modular forms. We use [Z] as reference, while there are many others that would suffice.

The group action of $SL_2(\mathbb{R})$ on $\mathbb{H} = \{z \in \mathbb{C} | \operatorname{Im}(z) > 0\}$ is defined by $z \mapsto \gamma(z)$ where for $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{R}), \, \gamma(z) = \frac{az+b}{cz+d}$. We extend this to $\mathbb{H} \cup \{\infty\} \cup \mathbb{Q}$ such that $\gamma(\infty) = \frac{a}{c}$.

A complex-valued function f is a modular form if it is holomorphic for every point $z \in \mathbb{H} \cup \{\infty\} \cup \mathbb{Q}$ and satisfies the transformation law $f(\gamma(z)) = f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)$ for all $z \in \mathbb{H} \cup \{\infty\} \cup \mathbb{Q}$, all $\gamma \in SL_2(\mathbb{Z})$, and some $k \in \mathbb{Z}$. Typically, k is positive and even since the only modular forms of weight 0 are constant functions, the only modular form of odd weight is the 0-function, and there are no modular forms of negative weight.

Two elements $z_1, z_2 \in \mathbb{H} \cup \{\infty\} \cup \mathbb{Q}$ are $SL_2(\mathbb{Z})$ -equivalent if there exists some $\gamma \in SL_2(\mathbb{Z})$ such that $\gamma(z_1) = z_2$.

There exist infinitely many $SL_2(\mathbb{Z})$ -equivalent regions of \mathbb{H} , one being the fundamental domain. This is denoted as $\mathcal{F} = \{z = x + iy \in \mathbb{H} : x \in (-\frac{1}{2}, \frac{1}{2}), |z| \ge 1\}$. If we are concerned with locating the zeros of a modular form, it suffices to locate unique zeros up to $SL_2(\mathbb{Z})$ equivalence. Thus we look for zeros in \mathcal{F} . Note that the lines $x = -\frac{1}{2}$ and $x = \frac{1}{2}$ are $SL_2(\mathbb{Z})$ -equivalent, as are the two sides of the arc $|z| = 1, x \in [-\frac{1}{2}, 0]$ and $|z| = 1, x \in [0, -\frac{1}{2}]$ so it suffices to consider only one of each.

The valence formula

(2.1)
$$\frac{1}{2}v_i(f) + \frac{1}{3}v_\rho(f) + \sum_{\substack{z \neq i, \rho \\ z \in \mathbb{H}}} v_z(f) = \frac{k}{12}$$

tells us that a modular form f of weight k has precisely $\frac{k}{12}$ zeros.

The Eisenstein series of weight k for $z \in \mathbb{H} \cup \{\infty\}, k \ge 4$ is defined by

(2.2)
$$E_k(z) = \frac{1}{2} \sum_{\substack{(c,d)=1\\c,d\in\mathbb{Z}}} \frac{1}{(cz+d)^k}$$

with a corresponding normalized Fourier expansion, $E_k(z) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) e^{2\pi i n z}$ where B_k denotes the kth Bernoulli number.

3. Proof of Theorem 1.3

For $k, l \geq 4$, we focus on the modular form of weight k + l, $E_k(z)E_l(z) - E_{k+l}(z)$, and its zeros. Note that this is a cusp form for all k, l and that $E(\frac{1}{2} + iy) \in \mathbb{R}$, so $E_k(\frac{1}{2} + iy)E_l(\frac{1}{2} + iy) - E_{k+l}(\frac{1}{2} + iy) \in \mathbb{R}$ as well. When k = l = 4, $E_kE_l - E_{k+l} = 0$ since $E_4^2 = E_8$. Thus for the k = l case, we focus on $k \geq 6$.

We want to approximate $E_k(\frac{1}{2}+iy)^2 - E_{2k}(\frac{1}{2}+iy)$ and use the resulting function to exhibit $\lfloor \frac{k}{6} \rfloor$ sign changes, showing that $E_k^2 - E_{2k}$ has $\lfloor \frac{k}{6} \rfloor - 1$ zeros on the line $x = \frac{1}{2}$. Unfortunately, our method only works up to $y \leq c_0 \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_0 \leq \frac{1}{\sqrt{8}}$, so we define *n* to be the number of zeros of the form $z = \frac{1}{2} + iy$ with $y > c_0 \frac{\sqrt{k}}{\sqrt{\log k}}$ of $E_k^2 - E_{2k}$. Working with *y* in our range, we instead prove $\lfloor \frac{k}{6} \rfloor - (1+n)$ zeros.

The points we will use are of the form $z = \frac{1}{2} + iy_m$ where $y_m = \frac{\tan(\theta_m)}{2}$ for $\theta_m = \frac{m\pi}{k}$ where $m \in \mathbb{Z}$ such that $\lceil \frac{k}{3} \rceil \leq m < \frac{k}{2} - n$. If we rewrite $E_k = M_k + R_k$, then $E_k^2 - E_{2k} = M_k^2 - M_{2k} + 2M_kR_k + R_k^2 - R_{2k}$. Then we wish to show $|M_k(\frac{1}{2} + iy_m) - M_{2k}(\frac{1}{2} + iy_m)| > |2M_k(\frac{1}{2} + iy_m)R_k(\frac{1}{2} + iy_m) + R_k(\frac{1}{2} + iy_m)^2 - R_{2k}(\frac{1}{2} + iy_m)|$. In order to do this, we need to bound $|2M_k(\frac{1}{2} + iy_m)R_k(\frac{1}{2} + iy_m) + R_k(\frac{1}{2} + iy_m)^2 - R_{2k}(\frac{1}{2} + iy_m)|$ from above and $|M_k(\frac{1}{2} + iy_m) - M_{2k}(\frac{1}{2} + iy_m)|$ from below, the first of which requires bounding $|R_k|$ on its own.

Lemma 3.1. For all $\frac{\sqrt{3}}{2} \leq y \leq c_0 \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_0 \leq \frac{1}{\sqrt{8}}$, the absolute value of the remainder term $|R_k(\frac{1}{2}+iy)|$ is less than $\frac{9+12y}{(\frac{9}{4}+y^2)^{\frac{k}{2}}}$.

Proof. Write $E_k(\frac{1}{2} + iy) = M_k(\frac{1}{2} + iy) + R_k(\frac{1}{2} + iy)$ where

(3.1)
$$M_k(\frac{1}{2} + iy) = \underbrace{1 + \frac{1}{(\frac{1}{2} + iy)^k} + \frac{1}{(\frac{-1}{2} + iy)^k}}_{(\frac{-1}{2} + iy)^k}$$

 $c^2+d^2=1,2$ except for (c,d) where c=1,d=1 and c=-1,d=-1

and

(3.2)
$$R_{k}(\frac{1}{2} + iy) = \underbrace{\frac{1}{(\frac{3}{2} + iy)^{k}}}_{c=1,d=1 \text{ and } c=-1,d=-1} + \frac{1}{2} \sum_{\substack{(c,d)=1,c^{2}+d^{2}\geq 5\\c,d\in\mathbb{Z}}} \frac{1}{(c(\frac{1}{2} + iy) + d)^{k}}$$

Then $|R_{k}(\frac{1}{2} + iy)| = \frac{1}{(\frac{9}{4} + y^{2})^{\frac{k}{2}}} + \left| \frac{1}{2} \sum_{\substack{c^{2}+d^{2}\geq 5\\(c,d)=1\\c,d\in\mathbb{Z}}} \frac{1}{(c(\frac{1}{2} + iy) + d)^{k}} \right|.$

Rewrite

$$\left| \frac{1}{2} \sum_{\substack{c^2 + d^2 \ge 5\\ (c,d) = 1\\ c,d \in \mathbb{Z}}} \frac{1}{(c(\frac{1}{2} + iy) + d)^k} \right| = \underbrace{\frac{1}{(4 + 4y^2)^{\frac{k}{2}}} + \frac{1}{(4y^2)^{\frac{k}{2}}} + \frac{1}{(\frac{25}{4} + y^2)^{\frac{k}{2}}}}_{c^2 + d^2 = 5} + \underbrace{\frac{1}{2} \sum_{\substack{c^2 + d^2 \ge 10\\ (c,d) = 1\\ c,d \in \mathbb{Z}}} \frac{1}{((\frac{c}{2} + d)^2 + c^2y^2)^{\frac{k}{2}}}}_{T_k(\frac{1}{2} + iy)}$$

and observe that (c, d) and (-c, -d) yield identical terms. Then we sum over positive c only, eliminating the coefficient of $\frac{1}{2}$. Similarly, for fixed c, the terms for (c, d) and (c, -(d + c)) yield idential terms as well. This lets us sum over positive d for each c, accounting for the lack of symmetry when c = 1 and c = 2. For simplicity, we drop the coprime condition on c and d.

(3.4)
$$T_k(\frac{1}{2} + iy) = \sum_{c=1}^{\infty} \sum_{\substack{d \ge 1 \\ c^2 + d^2 \ge 10}}^{\infty} \frac{1}{((\frac{c}{2} + d)^2 + c^2 y^2)^{\frac{k}{2}}} + \frac{1}{((\frac{c}{2} - d)^2 + c^2 y^2)^{\frac{k}{2}}}$$

and we proceed by finding an upper bound for each fixed c. Due to the isolated terms not included in $T_k(\frac{1}{2} + iy)$, c = 1 and c = 2 must be bounded separately. For c = 1 we have

$$\sum_{\substack{d \ge 1 \\ 1+d^2 \ge 10}}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+d\right)^2+y^2\right)^{\frac{k}{2}}} + \frac{1}{\left(\left(\frac{1}{2}-d\right)^2+y^2\right)^{\frac{k}{2}}} = \frac{1}{\left(\frac{5}{2}+y^2\right)^{\frac{k}{2}}} + 2\sum_{d=3}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+d\right)^2+y^2\right)^{\frac{k}{2}}}$$

(3.6)
$$\leq \frac{1}{\left(\frac{5}{2}+y^2\right)^{\frac{k}{2}}} + 2\left(\frac{1}{\left(\left(\frac{1}{2}+3\right)^2+y^2\right)^{\frac{k}{2}}} + \int_3^\infty \frac{1}{\left(\left(\frac{1}{2}+x\right)^2+y^2\right)^{\frac{k}{2}}} dx\right)$$

$$(3.7) \qquad \leq \frac{1}{\left(\frac{5}{2}+y^2\right)^{\frac{k}{2}}} + 2\left(\frac{1}{\left(\left(\frac{1}{2}+3\right)^2+y^2\right)^{\frac{k}{2}}} + \int_3^{y+\frac{1}{2}} \frac{1}{\left(\left(\frac{1}{2}+x\right)^2+y^2\right)^{\frac{k}{2}}} dx + \int_{y+\frac{1}{2}}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+x\right)^2+y^2\right)^{\frac{k}{2}}} dx\right)$$

$$(3.8) \qquad \qquad <\frac{1}{(\frac{5}{2}+y^2)^{\frac{k}{2}}}+2\Big(\frac{1}{((\frac{1}{2}+3)^2+y^2)^{\frac{k}{2}}}+\underbrace{\int_{3}^{y+\frac{1}{2}}\frac{1}{(\frac{1}{2}+3)^2+y^2)^{\frac{k}{2}}}dx}_{\frac{1}{2}+x\leq y}+\underbrace{\int_{y+\frac{1}{2}}^{\infty}\frac{1}{((\frac{1}{2}+x)^2)^{\frac{k}{2}}}dx}_{\frac{1}{2}+x>y}\Big)$$

(3.9)
$$< \frac{1}{\left(\frac{5}{2} + y^2\right)^{\frac{k}{2}}} + \frac{2 + 2y}{\left(\frac{49}{4} + y^2\right)^{\frac{k}{2}}} + \frac{2}{(k-1)(y+1)^{k-1}}$$

Similarly,

(3.10)

$$\sum_{\substack{d\geq 1\\4+d^2\geq 10}}^{\infty} \frac{1}{((1+d)^2+4y^2)^{\frac{k}{2}}} + \frac{1}{((1-d)^2+4y^2)^{\frac{k}{2}}} = \underbrace{\frac{1}{(4+4y^2)^{\frac{k}{2}}}}_{d=-3} + \underbrace{\frac{1}{(9+4y^2)^{\frac{k}{2}}}}_{d=-4} + 2\sum_{d=3}^{\infty} \frac{1}{((1+d)^2+4y^2)^{\frac{k}{2}}}$$

where

$$(3.11) \qquad 2\sum_{d=3}^{\infty} \frac{1}{\left((1+d)^2 + 4y^2\right)^{\frac{k}{2}}} \le 2\left(\frac{1}{\left((1+3)^2 + 4y^2\right)^{\frac{k}{2}}} + \int_{3}^{\infty} \frac{1}{\left((1+x)^2 + 4y^2\right)^{\frac{k}{2}}} dx\right)$$

(3.12)
$$= 2\left(\frac{1}{(16+4y^2)^{\frac{k}{2}}} + \int_3^{2y-1} \frac{1}{((1+x)^2+4y^2)^{\frac{k}{2}}} dx + \int_{2y-1}^{\infty} \frac{1}{((1+x)^2+4y^2)^{\frac{k}{2}}} dx\right)$$

$$(3.13) \qquad \qquad < 2\Big(\frac{1}{(16+4y^2)^{\frac{k}{2}}} + \underbrace{\int_{3}^{2y-1} \frac{1}{(4y^2)^{\frac{k}{2}}} dx}_{x+1 \le 2y} + \underbrace{\int_{2y-1}^{\infty} \frac{1}{((1+x)^2)^{\frac{k}{2}}} dx}_{x+1 > 2y}\Big)$$

(3.14)
$$< \frac{2}{(16+4y^2)^{\frac{k}{2}}} + \frac{3}{(2y)^{k-1}}$$

which totals to $\frac{1}{(4+4y^2)^{\frac{k}{2}}} + \frac{1}{(9+4y^2)^{\frac{k}{2}}} + \frac{2}{(16+4y^2)^{\frac{k}{2}}} + \frac{3}{(2y)^{k-1}}$ for c = 2.

For general
$$c \ge 3$$
,
(3.15)

$$\sum_{\substack{d\ge 1\\c^2+d^2\ge 10}}^{\infty} \frac{1}{((\frac{c}{2}+d)^2+c^2y^2)^{\frac{k}{2}}} + \frac{1}{((\frac{c}{2}-d)^2+c^2y^2)^{\frac{k}{2}}} = 2\sum_{d=1}^{\infty} \frac{1}{((\frac{c}{2}+d)^2+c^2y^2)^{\frac{k}{2}}} \le 4\left(\frac{1}{((\frac{c}{2}+\frac{1-c}{2})^2+c^2y^2)^{\frac{k}{2}}} + \int_{\frac{1-c}{2}}^{\infty} \frac{1}{((\frac{c}{2}+x)^2+c^2y^2)^{\frac{k}{2}}}\right)$$

if c is odd, and

$$(3.16) \qquad \qquad 2\sum_{d=1}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+d\right)^2 + c^2 y^2\right)^{\frac{k}{2}}} \le 4\left(\frac{1}{\left(\left(\frac{c}{2}+1-\frac{c}{2}\right)^2 + c^2 y^2\right)^{\frac{k}{2}}} + \int_{1-\frac{c}{2}}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+x\right)^2 + c^2 y^2\right)^{\frac{k}{2}}} dx\right)$$

if c is even. We bound odd c by even c to get

$$(3.17) \qquad 2\sum_{d=1}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+d\right)^2+c^2y^2\right)^{\frac{k}{2}}} \le 4\left(\frac{1}{\left(\left(\frac{c}{2}+\frac{1-c}{2}\right)^2+c^2y^2\right)^{\frac{k}{2}}} + \int_{\frac{1-c}{2}}^{\infty} \frac{1}{\left(\left(\frac{c}{2}+x\right)^2+c^2y^2\right)^{\frac{k}{2}}} dx\right) (3.18) \qquad \qquad < 4\left(\frac{1}{\left(\frac{1}{4}+c^2y^2\right)^{\frac{k}{2}}} + \int_{0}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+x\right)^2+c^2y^2\right)^{\frac{k}{2}}} dx\right)$$

(3.19)
$$= 4\left(\frac{1}{\left(\frac{1}{4}+c^2y^2\right)^{\frac{k}{2}}} + \left(\int_0^{cy-\frac{1}{2}} \frac{1}{\left(\left(\frac{1}{2}+x\right)^2+c^2y^2\right)^{\frac{k}{2}}}dx + \int_{cy-\frac{1}{2}}^{\infty} \frac{1}{\left(\left(\frac{1}{2}+x\right)^2+c^2y^2\right)^{\frac{k}{2}}}dx\right)$$

$$(3.20) \qquad \qquad < 4\left(\frac{1}{\left(\frac{1}{4}+c^{2}y^{2}\right)^{\frac{k}{2}}}+\left(\underbrace{\int_{0}^{cy-\frac{1}{2}}\frac{1}{\left(c^{2}y^{2}\right)^{\frac{k}{2}}}}_{x+\frac{1}{2}\leq cy}+\underbrace{\int_{cy-\frac{1}{2}}^{\infty}\frac{1}{\left(\left(\frac{1}{2}+x\right)^{2}\right)^{\frac{k}{2}}}dx}_{x+\frac{1}{2}>cy}\right)$$

(3.21)
$$< \frac{4}{(\frac{1}{4} + c^2 y^2)^{\frac{k}{2}}} + (4 + \frac{4}{k-1}) \frac{1}{(cy)^{k-1}}$$

Summing over all fixed $c\geq 3$ gives us

$$\begin{array}{l} (3.22) \\ \sum_{c=3}^{(3.22)} \left(\frac{4}{\left(\frac{1}{4} + c^2 y^2\right)^{\frac{k}{2}}} + \frac{4}{(cy)^{k-1}} + \frac{4}{(k-1)(cy)^{k-1}} \right) < \frac{4}{\left(\frac{1}{4} + 9y^2\right)^{\frac{k}{2}}} + \frac{4}{(3y)^{k-1}} + \frac{4}{(k-1)(3y)^{k-1}} + \int_{3}^{\infty} \left(\frac{1}{\left(\frac{1}{4} + x^2 y^2\right)^{\frac{k}{2}}} + \frac{1}{(xy)^{k-1}} + \frac{1}{(k-1)(xy)^{k-1}} dx \right) \\ (3.23) \\ (3.23) \\ (3.24) \\ \end{array}$$

which, combined with our upper bounds for c = 1, c = 2 gives us

$$\begin{aligned} (3.24)\\ T_k(\frac{1}{2}+iy) < \frac{1}{(\frac{5}{2}+y^2)^{\frac{k}{2}}} + \frac{2+2y}{(\frac{49}{4}+y^2)^{\frac{k}{2}}} + \frac{2}{(k-1)(y+1)^{k-1}} + \frac{1}{(4+4y^2)^{\frac{k}{2}}} + \frac{1}{(9+4y^2)^{\frac{k}{2}}} + \frac{2}{(16+4y^2)^{\frac{k}{2}}} + \frac{3}{(2y)^{k-1}} + \frac{4}{(\frac{1}{4}+9y^2)^{\frac{k}{2}}} + \frac{11}{(3y)^{k-1}} \end{aligned}$$

and

(3.25)

$$|R_{k}(\frac{1}{2}+iy)| < \frac{1}{(\frac{9}{4}+y^{2})^{\frac{k}{2}}} + \frac{1}{(4+4y^{2})^{\frac{k}{2}}} + \frac{1}{(4y^{2})^{\frac{k}{2}}} + \frac{1}{(\frac{25}{4}+y^{2})^{\frac{k}{2}}} + \frac{1}{(\frac{5}{2}+y^{2})^{\frac{k}{2}}} + \frac{2+2y}{(\frac{49}{4}+y^{2})^{\frac{k}{2}}}$$

$$(3.26) + \frac{2}{(\frac{3}{4}+y^{2})^{\frac{k}{2}}} + \frac{1}{(\frac{1}{4}+y^{2})^{\frac{k}{2}}} + \frac{1}{(\frac{1}{4}$$

$$(3.20) + \frac{1}{(k-1)(y+1)^{k-1}} + \frac{1}{(4+4y^2)^{\frac{k}{2}}} + \frac{1}{(9+4y^2)^{\frac{k}{2}}} + \frac{1}{(16+4y^2)^{\frac{k}{2}}} + \frac{1}{(16+4y^2)^{\frac{k}{2}}}$$

(3.27)
$$+ \frac{3}{(2y)^{k-1}} + \frac{1}{(\frac{1}{4} + 9y^2)^{\frac{k}{2}}} + \frac{11}{(3y)^{k-1}}$$

$$(3.28) \qquad \qquad < \frac{4}{\left(\frac{9}{4}+y^2\right)^{\frac{k}{2}}} + \frac{10}{\left(4y^2\right)^{\frac{k}{2}}} + \frac{2y}{\left(\frac{49}{4}+y^2\right)^{\frac{k}{2}}} + \frac{\frac{2y+2}{k-1}}{\left(y^2+2y+1\right)^{\frac{k}{2}}} + \frac{6y}{\left(4y^2\right)^{\frac{k}{2}}} + \frac{33y}{\left(9y^2\right)^{\frac{k}{2}}}$$

(3.29)
$$< \frac{7}{\left(\frac{9}{4} + y^2\right)^{\frac{k}{2}}} + \frac{12y+2}{\left(\frac{49}{4} + y^2\right)^{\frac{k}{2}}} < \frac{9+12y}{\left(\frac{9}{4} + y^2\right)^{\frac{k}{2}}}$$

г		1
		L
		L
		L
		L

Thus for any $z \in \mathbb{H}$ of the form $\frac{1}{2} + iy$, $|R_k(\frac{1}{2} + iy)| < \frac{9+12y}{(\frac{9}{4} + y^2)^{\frac{k}{2}}}$.

Lemma 3.2. For all $\frac{\sqrt{3}}{2} \leq y \leq c_0 \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_0 \leq \frac{1}{\sqrt{8}}$, the absolute value of the main term $|2M_k(\frac{1}{2}+iy)R_k(\frac{1}{2}+iy) + R_k(\frac{1}{2}+iy)^2 - R_{2k}(\frac{1}{2}+iy)|$ is strictly less than $8\left(\frac{9+12y}{(\frac{9}{4}+y^2)^{\frac{k}{2}}}\right)$.

Proof. Recall that $M_k(\frac{1}{2} + iy) = 1 + \frac{1}{(\frac{1}{2} + iy)^k} + \frac{1}{(-\frac{1}{2} + iy)^k}$, so $|M_k(\frac{1}{2} + iy)| \le 1 + |\frac{1}{(\frac{1}{2} + iy)^k}| + |\frac{1}{(-\frac{1}{2} + iy)^k}| \le 3$ and $|R_k(\frac{1}{2} + iy)| < \frac{9 + 12y}{(\frac{9}{4} + y^2)^{\frac{k}{2}}}$ which is decreasing in k. Then

$$\begin{aligned} (3.30) \\ |2M_k(\frac{1}{2} + iy)R_k(\frac{1}{2} + iy) + R_k(\frac{1}{2} + iy)^2 - R_{2k}(\frac{1}{2} + iy)| &\leq 2|M_k(\frac{1}{2} + iy)||R_k(\frac{1}{2} + iy)| + |R_k(\frac{1}{2} + iy)|^2 \\ (3.31) \\ &+ |R_{2k}(\frac{1}{2} + iy)| \\ (3.32) \\ (3.33) \\ &= 8|R_k(\frac{1}{2} + iy)| \\ &= 8|R_k(\frac{1}{2} + iy)| \end{aligned}$$

which implies $2M_k(\frac{1}{2}+iy)R_k(\frac{1}{2}+iy) + R_k(\frac{1}{2}+iy)^2 - R_{2k}(\frac{1}{2}+iy) < 8|R_k(\frac{1}{2}+iy)| < 8\left(\frac{9+12y}{(\frac{9}{4}+y^2)^{\frac{k}{2}}}\right)$ by Lemma 3.1.

Lemma 3.3. For all $\frac{\sqrt{3}}{2} \leq y_m = \frac{\tan(\theta_m)}{2} \leq c_0 \frac{\sqrt{k}}{\sqrt{\log k}}$ for $c_0 \leq \frac{1}{\sqrt{8}}$ with $\theta_m = \frac{m\pi}{k}$ where $m \in \mathbb{Z}$ such that $\lceil \frac{k}{3} \rceil < m < \frac{k}{2} - n$, the absolute value of the main term $|M_k(\frac{1}{2} + iy_m)^2 - M_{2k}(\frac{1}{2} + iy_m)^2$ is at least $\frac{4(\frac{1}{4} + y_m^2)^{\frac{k}{2}} - 2}{(\frac{1}{4} + y_m^2)^k}$.

Proof. If we rewrite $\frac{1}{2} + iy_m = re^{i\theta_m}$, then (3.34)

$$M_{k}(re^{i\theta_{m}})^{2} - M_{2k}(re^{i\theta_{m}})^{2} = \left(1 + \frac{1}{(re^{i\theta_{m}})^{k}} + \frac{1}{(re^{i(\pi-\theta_{m})})^{k}}\right)^{2} - \left(1 + \frac{1}{(re^{i\theta_{m}})^{2k}} + \frac{1}{(re^{i(\pi-\theta_{m})})^{2k}}\right)$$

(3.35)
$$= \frac{2}{(re^{i\theta_{m}})^{k}} + \frac{2}{(re^{i(\pi-\theta_{m})})^{k}} + \frac{2}{(re^{i\theta_{m}})^{k}(re^{i(\pi-\theta_{m})})^{k}}$$

(3.36)
$$= \frac{2r^k(e^{i(\pi-\theta)k} + e^{i\theta k}) + 2}{(re^{i\theta k})(r^k e^{i\pi k} e^{-i\theta k})}$$

(3.37)
$$= \frac{(re^{i\theta k})(r^k e^{i\pi k} e^{-i\theta k})}{r^{2k}(e^{i\pi k} e^{-i\theta k}) + 2}$$

(3.38)
$$= \frac{4r^k \cos(\theta k) + 2}{r^{2k}}$$

and for our points, $\cos(\theta_m k) = \cos(\frac{m\pi}{k}k) = \cos(m\pi) = (-1)^m$ so

(3.39)
$$|M_k(\frac{1}{2} + iy_m)^2 - M_{2k}(\frac{1}{2} + iy_m)^2| = \left|\frac{4r^k(-1)^m + 2}{r^{2k}}\right|$$

$$(3.40) \ge \frac{4r^n - 2}{r^{2k}}$$

(3.41)

Converting back from polar coordinates gives us $r^k = (\frac{1}{4} + y_m^2)^{\frac{k}{2}}$ so

(3.42)
$$|M_k(\frac{1}{2} + iy_m)^2 - M_{2k}(\frac{1}{2} + iy_m)^2| \ge \frac{4(\frac{1}{4} + y_m^2)^{\frac{\kappa}{2}} - 2}{(\frac{1}{4} + y_m^2)^k}$$

Lemma 3.4. For all y_m as defined previously, $\frac{4(\frac{1}{4}+y_m^2)^{\frac{k}{2}}-2}{(\frac{1}{4}+y_m^2)^k}$ is strictly greater than $8\left(\frac{9+12y_m}{(\frac{9}{4}+y_m^2)^{\frac{k}{2}}}\right)$.

Proof. We simplify the desired inequality:

(3.43)

$$\frac{4(\frac{1}{4}+y_m^2)^{\frac{k}{2}}-2}{(\frac{1}{4}+y_m^2)^k} > \frac{72+96y_m}{(\frac{9}{4}+y_m^2)^{\frac{k}{2}}} \Rightarrow \frac{1}{(\frac{1}{4}+y_m^2)^{\frac{k}{2}}} - \frac{1}{2(\frac{1}{4}+y_m^2)^{\frac{k}{2}}} > \frac{18+24y_m}{(\frac{9}{4}+y_m^2)^{\frac{k}{2}}} \Rightarrow \left(\frac{\frac{9}{4}+y_m^2}{\frac{1}{4}+y_m^2}\right)^{\frac{k}{2}} > 19+24y_m$$

Notice that for all y_m in our range, $\left(\frac{38}{\sqrt{3}}+24\right)y_m \ge 19+24y_m$ so we let $c_2 = \frac{38}{\sqrt{3}}+24$ to get

(3.44)
$$\left(\frac{\frac{9}{4} + y_m^2}{\frac{1}{4} + y_m^2}\right)^{\frac{k}{2}} > c_2 y_m$$

This simplifies further to

(3.45)
$$\frac{k}{2}\log\left(\frac{\frac{9}{4}+y_m^2}{\frac{1}{4}+y_m^2}\right) > \log(c_2y_m) \Rightarrow \frac{k}{2}\log\left(1+\frac{2}{\frac{1}{4}+y_m^2}\right) > \log(c_2y_m)$$

and for all y_m in our range, it is the case that $\log(1 + \frac{2}{\frac{1}{4} + y_m^2}) \ge \frac{1}{\frac{1}{4} + y_m^2}$. This gives us

(3.46)
$$k > 2(\frac{1}{4} + y_m^2) \log(c_2 y_m)$$

Since $y_m \leq c_0 \frac{\sqrt{k}}{\sqrt{\log k}}$,

(3.47)
$$2(\frac{1}{4} + y_m^2)\log(c_2 y_m) \le 2(\frac{1}{4} + c_0^2 \frac{k}{\log k})\log(c_2 c_0 \frac{k}{\log k})$$

so we need

(3.48)
$$k > 2(\frac{1}{4} + c_0^2 \frac{k}{\log k}) \log(c_2 c_0 \frac{\sqrt{k}}{\sqrt{\log k}})$$

Notice that $c_0 \frac{\sqrt{k}}{\sqrt{\log k}}$ and let $k \ge c_2$. This gives us

(3.49)
$$k > 2(\frac{1}{4} + c_0^2 \frac{k}{\log k}) \log(k^2) = 4(\frac{1}{4} + c_0^2 \frac{k}{\log k}) \log(k)$$

which brings us to two cases.

Case 1: If
$$\frac{1}{4} > \frac{c_0^2 k}{\log k}$$
, we have $\left(\frac{1}{4} + \frac{c_0^2 k}{\log k}\right) < \frac{1}{2}$ and so

$$(3.50) k > 4(\frac{1}{2})\log(k)$$

$$(3.51) k > 2\log(k)$$

which is true for all k. Case 2: If $\frac{1}{4} \leq \frac{c_0^2 k}{\log k}$, then $\left(\frac{1}{4} + \frac{c_0^2 k}{\log k}\right) \leq \frac{2c_0^2 k}{\log k}$ and so

(3.52)
$$k > 4\left(\frac{2c_0^2 k}{\log k}\right)\log(k) = 8c_0^2 k,$$

which is true for all k with $c_0 \leq \frac{1}{\sqrt{8}}$. Thus in both cases, the inequality holds for all k, letting us conclude that for all y_m in our range, $\frac{4(\frac{1}{4}+y_m^2)^{\frac{k}{2}}-2}{(\frac{1}{4}+y_m^2)^k}$ is strictly greater than $8\left(\frac{9+12y_m}{(\frac{9}{4}+y_m^2)^{\frac{k}{2}}}\right)$.

Recall that we set $k \ge c_2$, so the following holds for $k \ge 46 = \lceil c_2 \rceil$. Combining our results from Lemmas 3.2, 3.3, and 3.4, we conclude that $|M_k(\frac{1}{2} + iy_m)^2 - M_{2k}(\frac{1}{2} + iy_m)|$ is strictly greater than $|2M_k(\frac{1}{2} + iy_m)R_k(\frac{1}{2} + iy_m) + R_k(\frac{1}{2} + iy_m)^2 - R_{2k}(\frac{1}{2} + iy_m)|$. This allows us to use $M_k(\frac{1}{2} + iy_m) - M_{2k}(\frac{1}{2} + iy_m)$ as an approximation for $\Delta_{k,k}(\frac{1}{2} + iy_m)$.

From (3.38) we know $M_k(\frac{1}{2}+iy_m)^2 - M_{2k}(\frac{1}{2}+iy_m) = M_k(re^{i\theta_m})^2 - M_{2k}(re^{i\theta_m}) = \frac{4r^k(-1)^m+2}{r^{2k}}$. Since $\lceil \frac{k}{3} \rceil \le m < \frac{k}{2} - n$ and there are $\frac{k}{6} - n$ integers in $\lceil \frac{k}{3} \rceil, \frac{k}{2} - n \rceil$, we have shown that $M_k(\frac{1}{2}+iy_m)^2 - M_{2k}(\frac{1}{2}+iy_m)$ exhibits $\frac{k}{6} - n$ sign changes, and thus has $\frac{k}{6} - (1+n)$ zeros. Since this function adequately approximates $\Delta_{k,k}$, it follows that $\Delta_{k,k}$ has $\frac{k}{6} - (1+n)$ zeros on the line $x = \frac{1}{2}$. This concludes our proof.

4. Future work: the General Case for $\Delta_{k,l}$

With time, we hope to obtain similar results for the general case of $\Delta_{k,l}$ - when $k \neq l$. Observe that $\Delta_{k,l} = \Delta_{l,k}$ so let us work with k > l. If we write $\Delta_{k,l}$ by using our $E_k = M_k + R_k$ substitution, we have $\Delta_{k,l} = M_k M_l + R_k M_l + R_l M_k + R_k R_l - M_{k+l} - R_{k+l}$, with a proposed main term (1 1)

$$M_{k}(re^{i\theta})M_{l}(re^{i\theta}) - M_{k+l}(re^{i\theta}) = \left(\frac{r^{2k} + r^{k}2\cos(\theta k)}{r^{2k}}\right) \left(\frac{r^{2l} + r^{l}2\cos(\theta l)}{r^{2l}}\right) - \left(\frac{r^{2(k+l)} + r^{(k+l)}2\cos(\theta(k+l))}{r^{2(k+l)}}\right)$$

$$(4.2) = \frac{r^{2l+k}2\cos(\theta k) + r^{2k+l}2\cos(\theta l) + r^{k+l}2\cos(\theta(k-l))}{r^{2(k+l)}}$$

POLINA VULAKH

Since k > l, we suspect that the second term $r^{2k+l} 2\cos(\theta l)$ will contribute most to the value of the function. Thus we choose points $re^{i\theta_m}$ for $\theta_m = \frac{m\pi}{l}$ for $\lceil \frac{l}{3} \rceil \leq m < \frac{l}{2}$, analogous to our points in the case of $\Delta_{k,k}$. If we rewrite k = l + d, our main term becomes

$$(4.3) \quad \frac{r^{3l+d}2\cos(\theta_m(l+d)) + r^{3l+2d}2\cos(\theta_m l) + r^{2l+d}2\cos(\theta_m d)}{r^{4l+2d)}} = \frac{r^{3l+d}2\cos(ml)\cos(\frac{m\pi}{l}d) + r^{3l+2d}2\cos(ml) + r^{2l+d}2\cos(\frac{m\pi}{l}d)}{r^{4l+2d}} = \frac{r^{3l+d}2(-1)^m\cos(\frac{m\pi}{l}d) + r^{3l+2d}2(-1)^m + r^{2l+d}2\cos(\frac{m\pi}{l}d)}{r^{4l+2d}}$$

We would like to show that $|r^{3l+2d}2(-1)^m| > |r^{3l+d}2(-1)^m \cos(\frac{m\pi}{l}d) + r^{2l+d}2\cos(\frac{m\pi}{l}d)|$ by having separate cases for $d \equiv 0, 2, 4 \pmod{6}$. This is a result of $\cos(\frac{m\pi}{l}d)$ taking on different values depending on what d is (mod 6). In these three cases, we also want to find a lower bound on $|M_k(\frac{1}{2} + iy_m)M_l(\frac{1}{2} + iy_m) - M_{k+l}(\frac{1}{2} + iy_m)|$.

We believe $|R_k M_l + R_l M_k + R_k R_l - R_{k+l}| < 8|M_l| < 8\left(\frac{9+12y_m}{(\frac{9}{4}+y_m^2)^{\frac{1}{2}}}\right)$. By following the method of proof for $\Delta_{k,k}$, we hope to prove that $\Delta_{k,l}$ has $\lfloor \frac{l}{6} \rfloor - (1+n)$ zeros on the line $x = \frac{1}{2}$, a modified version of Conjecture 1.2. Here, n is the number of zeros of the form x + iy for $y > c_0 \frac{\sqrt{l}}{\sqrt{\log l}}$ for $c_0 \leq \frac{1}{\sqrt{8}}$.

This conjecture came from plotting the zeros of $\Delta_{k,l}$ in Mathematica and observing several patterns. Let $B_{k,l}$ be the number of zeros of the form $\frac{1}{2} + iy \in \mathcal{F}$ that $\Delta_{k,l}$. Then we compile a chart of $B_{k,l}$ for $10 \leq k, l \leq 100$, displayed below.

l\k	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92	94	96	98	100
10	Έ.	0	1	0	0	1	0	1	1	0	1	1	0	60	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12	0	1	0	A	1	1	1	1	1	1	1	1	1	Y	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14	1	n î	×.	1	1	1	1	1	î	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	î	1	1	1	1	î	1	î	î	î	î	1	1	1	1	1	î	1
14	ò	1	1	÷	1	- 1	1	1	- 1	1	1	- 1	1	2	2	1	-	2	1	2	2	1	- 1	2	1	- A	1 2	2	- 1	2		-	2	2	2	2	2	2	2	2	2	-	- 1		-1-	- 2
10	1	1	1	1	5	2	Å	1	2	1	1	2	1	2	2	1	2	2	1	2	2	1	2	2	1	్ల	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
18	1	1	1	1	2	1	4	. 4	4	2	4	2	2	2	2	2	2	2	4	2	2	2	2	2	4	4	4	2	2	4	2	2	2	4	2	4	4	4	4	2	2	2	2	2	2	2
20	1	1	1	2	1	X	2	2	- 2	- 2	- 2	- 2	2	2	2	2	- 2	- 2	- 2	- 2	2	- 2	- 2	- 2	2	- 2	- 2	- 2	2	- 2	- 2	- 2	2	- 2	2	2	2	- 2	2	- 2	2	2	2	2	2	2
22	1	1	1	1	2	2	2	2	3	2	2	3	2	2	3	2	2	3	2	3	3	2	3	3	2	3	3	2	3	3	2	3	3	2	ര	3	3	3	3	3	3	3	3	3	3	3
24	1	1	1	1	2	2	2	<u></u> 3.	2	3	3	2	Δ	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
26	1	1	1	2	2	2	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
28	1	1	1	1	2	2	2	3	3	3	3	4	3	3	4	3	3	4	3	3	4	3	3	4	3	4	4	3	4	4	3	4	4	3	4	4	3	4	4	3	4	4	3	4	4	3
30	1	1	1	1	2	2	2	3	3	3	*	. 3	4	4	3	A	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
32	1	1	1	2	2	2	3	2	3	4	3	X	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
34	1	1	1	1	2	2	2	3	3	3	4	4	- AL	4	5	4	4	5	4	4	5	4	4	5	4	4	5	4	4	5	4	5	5	4	5	5	4	5	5	4	5	5	4	5	5	4
26	1	1	1	2	2	2	2	2	2	2	Â	Â	4	<u>~</u>	4	ê	ĉ	4	A	ê	c	÷	ċ	Ē	ċ	÷	c	÷	ċ	Ē	ċ	c	c	ê	c	c	ć	c	c	ê	c	c	ć	Ē	č	÷
30	1	1	1	2	2	2	2	2	2	4	2	7	÷		~-	5	5	Ť	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
38	1	1	1	2	2	2	3	3	3	4	3	4	5	4	- 2-	<u> </u>	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
40	1	1	1	1	2	2	2	3	3	3	4	4	4	5	5	2	5	6	5	5	6	5	5	6	2	5	6	5	5	6	5	5	6	5	5	6	5	6	6	5	6	6	5	6	6	5
42	1	1	1	2	2	2	2	3	3	3	4	4	4	5	5	5	6	् 5	6	6	5	6	6	5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
44	1	1	1	2	2	2	3	3	3	4	4	4	5	4	5	6	5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
46	1	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6	6	7	6	6	7	6	6	7	6	6	7	6	6	7	6	6	7	6	6	7	6	6	7	6	7	7	6
48	1	1	1	2	2	2	3	3	3	3	4	4	4	5	5	5	6	6	6	X	. 6	7	7	6	7	7	6	₽	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
50	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	5	6	7	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7

Each entry corresponds to $B_{k,l}$ for $\Delta_{k,l}$ where the diagonal line connects $B_{k,k}$. We observe that for fixed l, $B_{k,l}$ stabilizes to $\lceil \frac{l}{6} \rceil - 1$. The circles correspond to when $B_{k,l}$ stabilizes for $l \equiv 4 \pmod{6}$, while the triangles correspond to when $B_{k,l}$ stabilizes for $l \equiv 0 \pmod{6}$. This leads us to several patterns that result in conjectures expanding on Conjecture 1.2:

Conjecture 4.1. For fixed $l \equiv 4 \pmod{6}$, $\Delta_{k,l}$ has $\lceil \frac{l}{6} \rceil - 1$ zeros on the line $x = \frac{1}{2}$ if $k \geq k_0$. Evidence suggests that $k_0 \leq l + 18(\lfloor \frac{l}{6} \rfloor)$.

Conjecture 4.2. For fixed $l \equiv 0 \pmod{6}$, $\Delta_{k,l}$ has $\frac{l}{6} - 1$ zeros on the line $x = \frac{1}{2}$ if $k \geq l + 4 + 6(\frac{l-1}{6} \pmod{3})$ or $k - l \equiv 0, 4 \pmod{6}$. Otherwise, $\Delta_{k,l}$ has $\frac{l}{6} - 2$ zeros on the line $x = \frac{1}{2}$.

Conjecture 4.3. For fixed $l \equiv 2 \pmod{6}$, $\Delta_{k,l}$ has $\lfloor \frac{l}{6} \rfloor - 1$ zeros on the line $x = \frac{1}{2}$ for all $k \geq l$.

We hope to prove a weaker version of Conjecture 1.2, one that is analogous to Theorem 1.3 for general k, l:

Conjecture 4.4. The modular form $\Delta_{k,l}$ has at least $\lfloor \frac{l}{6} \rfloor - (1+n)$ zeros in \mathcal{F} that lie on the line $x = \frac{1}{2}$ where n is the number of zeros of the form $\frac{1}{2} + iy$ with $y > c_0 \frac{\sqrt{l}}{\sqrt{\log l}}$.

Lastly, we would like to find an exact value for n. So far, we suspect $n \approx \frac{\sqrt{l}}{6}$. This will give an exact number for how many zeros we can prove the location of, both in the case of $\Delta_{k,k}$ and $\Delta_{k,l}$.

References

- [RS] F. K. C. Rankin, H. P. F Swinnerton-Dyer, On the zeros of Eisenstein series. Bull. London Math. Soc. 2 1970, 169–170.
- [Z] D. Zagier, *Elliptic modular forms and their applications*. The 1-2-3 of modular forms, 1–103, Universitext, Springer, Berlin, 2008.

E-mail address: pvulakh@gmail.com