Zeros of the Modular Form $E_{k} E_{l}-E_{k+l}$

Sarah Reitzes and Polina Vulakh

Tufts University, Bard College
pvulakh@gmail.com
July 23, 2015

Zeros of Modular Forms

Zeros of Modular Forms

- A complex-valued function f is a modular form if:

Zeros of Modular Forms

- A complex-valued function f is a modular form if:
(1) for all $z \in \mathbb{H} \cup\{\infty\}, \gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$
we have $f(\gamma(z))=f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)$. Then k is called the weight of f. (Transformation Law)

Zeros of Modular Forms

- A complex-valued function f is a modular form if:
(1) for all $z \in \mathbb{H} \cup\{\infty\}, \gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$
we have $f(\gamma(z))=f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)$. Then k is called the weight of f. (Transformation Law)
(2) f is holomorphic (complex differentiable) for every point $z \in \mathbb{H} \cup\{\infty\}$, so f can be expanded in a power series in z around any point $z_{0} \in \mathbb{H}$

Zeros of Modular Forms

- A complex-valued function f is a modular form if:
(1) for all $z \in \mathbb{H} \cup\{\infty\}, \gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$ we have $f(\gamma(z))=f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)$. Then k is called the weight of f. (Transformation Law)
(2) f is holomorphic (complex differentiable) for every point $z \in \mathbb{H} \cup\{\infty\}$, so f can be expanded in a power series in z around any point $z_{0} \in \mathbb{H}$ We look at modular forms of positive, even weight.

Zeros of Modular Forms

- A complex-valued function f is a modular form if:
(1) for all $z \in \mathbb{H} \cup\{\infty\}, \gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$
we have $f(\gamma(z))=f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)$. Then k is called the weight of f. (Transformation Law)
(2) f is holomorphic (complex differentiable) for every point $z \in \mathbb{H} \cup\{\infty\}$, so f can be expanded in a power series in z around any point $z_{0} \in \mathbb{H}$
We look at modular forms of positive, even weight.
- The valence formula tells us how many zeros f has.

$$
\frac{k}{12}=\frac{1}{2} v_{i}(f)+\frac{1}{3} v_{\rho}(f)+\sum_{\substack{z \neq i, \rho \\ z \in \mathbb{H}}} v_{z}(f)
$$

Zeros of the Eisenstein Series in \mathcal{F}

Eisenstein series of weight k :

$$
E_{k}(z)=\frac{1}{2} \sum_{\substack{(c, d)=1 \\ c, d \in \mathbb{Z}}} \frac{1}{(c z+d)^{k}}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) e^{2 \pi i n z}
$$

It has been proven that the zeros of the Eisenstein series lie on the arc of the fundamental domain $\mathcal{F}=\left\{z=x+i y \in \mathbb{H}: x \in\left(-\frac{1}{2}, \frac{1}{2}\right),|z| \geq 1\right\}$ (RSD, 1970).

Figure: \mathcal{F}

Figure: Zeros of E_{70}

Zeros of $E_{k} E_{I}-E_{k+1}$

Conjecture:

The zeros of $E_{k} E_{l}-E_{k+l}$, a modular form of weight $k+l$, lie on the boundary of \mathcal{F}.

Figure: Zeros of $E_{50}^{2}-E_{100}$

Figure: Zeros of $E_{60} E_{8}-E_{68}$

Conjecture:

The zeros of $E_{k}^{2}-E_{2 k}$, a modular form of weight $2 k$, lie on the lines $x= \pm \frac{1}{2}$ in \mathcal{F}.

Proving the zeros of $E_{k}^{2}-E_{2 k}$

Since $E_{k}\left(\frac{1}{2}+i y\right)$ is real-valued, we prove the desired number of zeros $\left(\left\lfloor\frac{k}{6}\right\rfloor-(1+n)\right)$ via IVT using points of the form $\frac{1}{2}+i y_{m}$ where $y_{m}=\frac{\tan \left(\theta_{m}\right)}{2}$ for $\theta_{m}=\frac{m \pi}{k}$ where $m \in \mathbb{Z}$ such that $\left\lceil\frac{k}{3}\right\rceil \leq m<\frac{k}{2}-n$.. Why -n?
We run into problems for $y \geq \frac{c_{0} \sqrt{k}}{\sqrt{\log k}}$, so n is the number of zeros with y past this range.
However, there exists a method involving the Fourier expansion that proves the location of zeros for which $y>c_{1} \sqrt{k \log k}$, so we lose very few zeros altogether.

Approximating $E_{k}^{2}-E_{2 k}$

Write $E_{k}\left(\frac{1}{2}+i y\right)=M_{k}\left(\frac{1}{2}+i y\right)+R_{k}\left(\frac{1}{2}+i y\right)$ where M_{k} corresponds to $c^{2}+d^{2} \leq 1$ - except for $(c, d)=(1,1)$ - and R_{k} corresponds to all other (c, d).
Then

$$
\begin{aligned}
E_{k}^{2}\left(\frac{1}{2}+i y\right)-E_{2 k}\left(\frac{1}{2}+i y\right)= & \left(M_{k}\left(\frac{1}{2}+i y\right)+R_{k}\left(\frac{1}{2}+i y\right)\right)^{2} \\
& \quad-\left(M_{2 k}\left(\frac{1}{2}+i y\right)+R_{2 k}\left(\frac{1}{2}+i y\right)\right) \\
= & M_{k}\left(\frac{1}{2}+i y\right)^{2}+2 M_{k}\left(\frac{1}{2}+i y\right) R_{k}\left(\frac{1}{2}+i y\right) \\
& +R_{k}\left(\frac{1}{2}+i y\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y\right)-R_{2 k}\left(\frac{1}{2}+i y\right)
\end{aligned}
$$

We know $\left|R_{k}\left(\frac{1}{2}+i y\right)\right|<\frac{9+12 y}{\left(\frac{9}{4}+y^{2}\right)^{\frac{k}{2}}}$, which is decreasing in k, and since $M_{k}\left(\frac{1}{2}+i y\right)=1+\frac{1}{\left(\frac{1}{2}+i y\right)^{k}}+\frac{1}{\left(-\frac{1}{2}+i y\right)^{k}}$, we know $\left|M_{k}\left(\frac{1}{2}+i y\right)\right| \leq 3$. Then we want to show

$$
\left|M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)\right|>8\left(\frac{9+12 y_{m}}{\left(\frac{9}{4}+y_{m}^{2}\right)^{\frac{k}{2}}}\right)
$$

Approximating $E_{k}^{2}-E_{2 k}$ (cont.)

For our points $\frac{1}{2}+i y_{m}$, we have a lower bound

$$
\left|M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)\right| \geq \frac{4\left(\frac{1}{4}+y_{m}^{2}\right)^{\frac{k}{2}}-2}{\left(\frac{1}{4}+y_{m}^{2}\right)^{k}}
$$

so we want to show

$$
\frac{4\left(\frac{1}{4}+y_{m}^{2}\right)^{\frac{k}{2}}-2}{\left(\frac{1}{4}+y_{m}^{2}\right)^{k}}>8\left(\frac{9+12 y_{m}}{\left(\frac{9}{4}+y_{m}^{2}\right)^{\frac{k}{2}}}\right)
$$

For large y, this is not true: specifically for $y \geq c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$ where $c_{0} \leq \frac{1}{\sqrt{8}}$, so we work with $y_{m}<c_{0} \frac{\sqrt{k}}{\sqrt{\log k}}$.
By simplifying further, we have $\left(\frac{\frac{9}{4}+y_{m}^{2}}{\frac{1}{4}+y_{m}^{2}}\right)^{\frac{k}{2}}>c_{2} y_{m}$ where $c_{2}=\frac{38}{\sqrt{3}}+24$.
This is true for $k \geq c_{2}$, so we have proved

$$
\left|M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)\right|>8\left(\frac{9+12 y_{m}}{\left(\frac{9}{4}+y_{m}^{2}\right)^{\frac{k}{2}}}\right) .
$$

Sign changes from $M_{k}\left(\frac{1}{2}+i y_{m}\right)^{2}-M_{2 k}\left(\frac{1}{2}+i y_{m}\right)$

If we rewrite $\frac{1}{2}+i y_{m}=r e^{i \theta_{m}}$, we have

$$
M_{k}\left(r e^{i \theta_{m}}\right)^{2}-M_{2 k}\left(r e^{i \theta_{m}}\right)=\frac{4 r^{k}(-1)^{m}+2}{r^{2 k}}
$$

For $\theta_{m}=\frac{m \pi}{k}$ where $m \in \mathbb{Z}$ such that $\left\lceil\frac{k}{3}\right\rceil \leq m<\frac{k}{2}-n$, this yields $\left\lfloor\frac{k}{6}\right\rfloor-n$ sign changes corresponding to $\left\lfloor\frac{k}{6}\right\rfloor-n-1$ zeros by IVT.

Extending this to general $E_{k} E_{l}-E_{k+1}$

Recall that $B_{k, l}=$ number of zeros of $E_{k} E_{l}-E_{k+l}$ for which $x=\frac{1}{2}$.

Conjecture:

$(k \geq I)$ The number of zeros $E_{k} E_{l}-E_{k+l}$ for which $x=\frac{1}{2}$ is at least that of $E_{l}^{2}-E_{2 /}$. In other words, $B_{k, l} \geq B_{l, l}$.

$\mathrm{k} \backslash \mathrm{l}$	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
10	0	0	1	0	0	1	0	1	1	0	1	1	0	1	1	1	1	1	1	1	1
12	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16	0	1	1	1	1	2	1	1	2	1	1	2	1	2	2	1	2	2	1	2	2
18	0	1	1	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
20	1	1	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
22	0	1	1	1	2	2	2	2	3	2	2	3	2	2	3	2	2	3	2	3	3
24	1	1	1	1	2	2	2	3	2	3	3	2	3	3	3	3	3	3	3	3	3
26	1	1	1	2	2	2	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3
28	0	1	1	1	2	2	2	3	3	3	3	4	3	3	4	3	3	4	3	3	4
30	1	1	1	1	2	2	2	3	3	3	4	3	4	4	3	4	4	4	4	4	4
32	1	1	1	2	2	2	3	2	3	4	3	4	4	4	4	4	4	4	4	4	4
34	0	1	1	1	2	2	2	3	3	3	4	4	4	4	5	4	4	5	4	4	5
36	1	1	1	2	2	2	2	3	3	3	4	4	4	5	4	5	5	4	5	5	5
38	1	1	1	2	2	2	3	3	3	4	3	4	5	4	5	5	5	5	5	5	5
40	1	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5	5	6	5	5	6
42	1	1	1	2	2	2	2	3	3	3	4	4	4	5	5	5	6	5	6	6	5
44	1	1	1	2	2	2	3	3	3	4	4	4	5	4	5	6	5	6	6	6	6
46	1	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6	6	7
48	1	1	1	2	2	2	3	3	3	3	4	4	4	5	5	5	6	6	6	7	7
50	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	5	6	7	7	7

Example: $E_{k} E_{34}-E_{k+34}$

Figure: $\mathrm{k}=34$

Figure: $\mathrm{k}=44$

Figure: $\mathrm{k}=40$

Figure: $\mathrm{k}=50$

Extending this to general $E_{k} E_{I}-E_{k+1}$ (cont.)

Our main term becomes

$$
M_{k}\left(r e^{i \theta}\right) M_{l}\left(r e^{i \theta}\right)-M_{k+l}\left(r e^{i \theta}\right)=\frac{r^{2 l+k} 2 \cos (\theta k)+r^{2 k+l} 2 \cos (\theta l)+r^{k+l} 2 \cos (\theta(k-l))}{r^{2(k+l)}}
$$

If we rewrite $k=I+d$ and let $\theta_{m}=\frac{m \pi}{l}$ for $\left\lceil\frac{l}{3}\right\rceil \leq m<\frac{l}{2}$,

$$
\frac{r^{3 I+d} 2(-1)^{m} \cos \left(\frac{m \pi}{l} d\right)+r^{3 /+2 d} 2(-1)^{m}+r^{2 I+d} 2 \cos \left(\frac{m \pi}{l} d\right)}{r^{4 /+2 d}}
$$

as our main term instead.
By splitting this up into three cases for $d \equiv 0,2,4(\bmod 6)$, we follow a similar method to show that $E_{k} E_{l}-E_{k+l}$ has at least $\left\lfloor\frac{l}{6}\right\rfloor-n-1$ zeros or which $x=\frac{1}{2}$.

