A problem coming from group theory

Suho Oh

Texas State University

May 7, 2016
Original Problem

For each i, j, a set $B_{i,j}$ is an arbitrary set of cardinality n.

$a_{i,1} \cdots a_{i,n-1} a_{i,n} \cdots$
$a_{2,1} \cdots a_{2,n-1} a_{2,n} \cdots$
$: \cdots \cdots \cdots \cdots \cdots$
$a_{n,1} \cdots \cdots a_{n,n} \cdots$

Easy when all $B_{i,j} = [n]$. Try!

A problem coming from group theory

May 7, 2016
For each i, j, a set $B_{i,j}$ is an arbitrary set of cardinality n.

$\mathbf{a}_{i,j} \in B_{i,j}$.
For each i, j, a set $B_{i,j}$ is an arbitrary set of cardinality n.

- $a_{i,j} \in B_{i,j}$.
- (first $n-1$ columns) $a_{i,1}, \ldots, a_{i,n-1}$ are mutually distinct.
For each i, j, a set $B_{i,j}$ is an arbitrary set of cardinality n.

For each i, j, $a_{i,j} \in B_{i,j}$.

(first n-1 columns) $a_{i,1}, \ldots, a_{i,n-1}$ are mutually distinct.

(afterwards) $a_{i,t} \notin \{a_{i,1}, \ldots, a_{i,n-2}\}$.
For each i, j, a set $B_{i,j}$ is an arbitrary set of cardinality n.

$a_{i,j} \in B_{i,j}$.

(first n-1 columns) $a_{i,1}, \cdots, a_{i,n-1}$ are mutually distinct.

(afterwards) $a_{i,t} \not\in \{a_{i,1}, \cdots, a_{i,n-2}\}$.

(row sets distinct at any point) $\{a_{i,1}, \cdots, a_{i,k}\} \neq \{a_{j,1}, \cdots, a_{j,k}\}$

\[
\begin{array}{cccc}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 a_{2,1} & \cdots & a_{2,n-1} & a_{2,n} \\
 \vdots & \cdots & \cdots & \cdots \\
 a_{n,1} & \cdots & \cdots & a_{n,n} \\
\end{array}
\]
For each i, j, a set $B_{i,j}$ is an arbitrary set of cardinality n.

- $a_{i,j} \in B_{i,j}$.
- (first $n-1$ columns) $a_{i,1}, \ldots, a_{i,n-1}$ are mutually distinct.
- (afterwards) $a_{i,t} \not\in \{a_{i,1}, \ldots, a_{i,n-2}\}$.
- (row sets distinct at any point) $\{a_{i,1}, \ldots, a_{i,k}\} \neq \{a_{j,1}, \ldots, a_{j,k}\}$

Easy when all $B_{i,j} = [n]$. Try!
Example

When $n = 5$, all $B_{i,j} = \{1, 2, 3, 4, 5\}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
</tbody>
</table>
Example

When $n = 5$, all $B_{i,j} = \{1, 2, 3, 4, 5\}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When all $B_{i,j}$ are the same, easy!

Observe: First $n-1$ columns and the columns after behave slightly differently.

If all $B_{i,j}$ are different, also easy!

Harder for other cases!

Number of columns? Can we just think of finite cases?

Konig Lemma: For a connected graph with infinitely many vertices, where degree is finite, the graph contains an infinitely long simple path.

(TSU)
Example

When \(n = 5 \), all \(B_{i,j} = \{1, 2, 3, 4, 5\} \)

\[
\begin{align*}
1 & \ 2 \ 3 \ 4 \ 4 \ 4 \ \cdots \\
2 & \ 3 \ 4 \ 5 \ 5 \ 5 \ \cdots \\
3 & \ 4 \ 5 \ 1 \ 1 \ 1 \ \cdots \\
4 & \ 5 \ 1 \ 2 \ 2 \ 2 \ \cdots \\
5 & \ 1 \ 2 \ 3 \ 3 \ 3 \ \cdots
\end{align*}
\]

- When all \(B_{i,j} \) are the same, easy!
- Observe: First \(n - 1 \) columns and the columns after behave slightly differently.
- If all \(B_{i,j} \) are different, also easy!
Example

When \(n = 5 \), all \(B_{i,j} = \{1, 2, 3, 4, 5\} \)

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 4 & 4 & \ldots \\
2 & 3 & 4 & 5 & 5 & 5 & \ldots \\
3 & 4 & 5 & 1 & 1 & 1 & \ldots \\
4 & 5 & 1 & 2 & 2 & 2 & \ldots \\
5 & 1 & 2 & 3 & 3 & 3 & \ldots \\
\end{array}
\]

- When all \(B_{i,j} \) are the same, easy!
- Observe: First \(n - 1 \) columns and the columns after behave slightly differently.
- If all \(B_{i,j} \) are different, also easy!
- Harder for other cases!
Example

When $n = 5$, all $B_{i,j} = \{1, 2, 3, 4, 5\}$

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 4 & 4 & \cdots \\
2 & 3 & 4 & 5 & 5 & 5 & \cdots \\
3 & 4 & 5 & 1 & 1 & 1 & \cdots \\
4 & 5 & 1 & 2 & 2 & 2 & \cdots \\
5 & 1 & 2 & 3 & 3 & 3 & \cdots \\
\end{array}
\]

- When all $B_{i,j}$ are the same, easy!
- Observe: First $n - 1$ columns and the columns after behave slightly differently.
- If all $B_{i,j}$ are different, also easy!
- Harder for other cases!
- Number of columns? Can we just think of finite cases?
Example

When \(n = 5 \), all \(B_{i,j} = \{1, 2, 3, 4, 5\} \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>\cdots</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>\cdots</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>\cdots</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>\cdots</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>\cdots</td>
<td></td>
</tr>
</tbody>
</table>

- When all \(B_{i,j} \) are the same, easy!
- Observe: First \(n - 1 \) columns and the columns after behave slightly differently.
- If all \(B_{i,j} \) are different, also easy!
- Harder for other cases!
- Number of columns? Can we just think of finite cases?
- Konig Lemma: \(G \) a connected graph with infinitely many vertices, where degree is finite, \(G \) contains an infinitely long simple path.
Motivation

\[
\begin{array}{cccc}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 a_{2,1} & \cdots & a_{2,n-1} & a_{2,n} \\
 \vdots & \cdots & \cdots & \cdots \\
 a_{n,1} & \cdots & \cdots & a_{n,n} \\
\end{array}
\]
Motivation

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{1,1}$</td>
<td>\cdots</td>
<td>$a_{1,n-1}$</td>
<td>$a_{1,n}$</td>
</tr>
<tr>
<td>$a_{2,1}$</td>
<td>\cdots</td>
<td>$a_{2,n-1}$</td>
<td>$a_{2,n}$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{n,1}$</td>
<td>\cdots</td>
<td>\cdots</td>
<td>$a_{n,n}$</td>
</tr>
</tbody>
</table>

G group acting on G-module V.

(Conjecture by Moreto, Jaikin-Zapairin) $r_k(G)$ is bounded linearly by $n(G, V)$.

$dl(G)$: derived length of a solvable group. (Keller) $dl(G) \leq 24 \log n(G, V) + 364$ (Conjectured by Keller) $dl(G) \leq 6 \log n(G, V) + 6$ (Follows from the problem for $n=6$) (Curtin O.) Yup! Problem is true for any n.

A problem coming from group theory May 7, 2016 4 / 8
Motivation

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{1,1}$</td>
<td>...</td>
<td>$a_{1,n-1}$</td>
<td>$a_{1,n}$</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$a_{2,1}$</td>
<td>...</td>
<td>$a_{2,n-1}$</td>
<td>$a_{2,n}$</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$a_{n,1}$</td>
<td>...</td>
<td></td>
<td>$a_{n,n}$</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.

(Conjecture by Moreto, Jaikin-Zapairin)

$r_k(G)$ is bounded linearly by $n(G, V)$.

$dl(G)$: derived length of a solvable group. (Keller): $dl(G) \leq 24 \log n(G, V) + 364$ (Conjectured by Keller)

$dl(G) \leq 6 \log n(G, V) + 6$ (Follows from the problem for $n=6$) (Curtin O.)

Yup! Problem is true for any n. (TSU: A problem coming from group theory)
Motivation

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.
- (Conjecture by Moreto, Jaikin-Zapairin) $rk(G)$ is bounded linearly by $n(G, V)$.
Motivation

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{1,1}$</td>
<td>\cdots</td>
<td>$a_{1,n-1}$</td>
<td>$a_{1,n}$</td>
<td>\cdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{2,1}$</td>
<td>\cdots</td>
<td>$a_{2,n-1}$</td>
<td>$a_{2,n}$</td>
<td>\cdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{n,1}$</td>
<td>\cdots</td>
<td>\cdots</td>
<td>$a_{n,n}$</td>
<td>\cdots</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.
- (Conjecture by Moreto, Jaikin-Zapairin) $rk(G)$ is bounded linearly by $n(G, V)$.
- $dl(G)$: derived length of a solvable group.
Motivation

\[\begin{array}{cccccc}
a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} & \cdots \\
a_{2,1} & \cdots & a_{2,n-1} & a_{2,n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n,1} & \cdots & \cdots & a_{n,n} & \cdots \\
\end{array} \]

- \(G \) group acting on \(G \)-module \(V \).
- \(n(G, V) \) : number of orbit sizes of \(G \) on \(V \).
- (Conjecture by Moreto, Jaikin-Zapairin) \(rk(G) \) is bounded linearly by \(n(G, V) \).
- \(dl(G) \) : derived length of a solvable group.
- (Keller) : \(dl(G) \leq 24 \log n(G, V) + 364 \)
Motivation

\[a_{1,1} \quad \cdots \quad a_{1,n-1} \quad a_{1,n} \quad \cdots \]
\[a_{2,1} \quad \cdots \quad a_{2,n-1} \quad a_{2,n} \quad \cdots \]
\[\vdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \]
\[a_{n,1} \quad \cdots \quad \cdots \quad a_{n,n} \quad \cdots \]

\(G \) group acting on \(G \)-module \(V \).

\(n(G, V) \) : number of orbit sizes of \(G \) on \(V \).

(Conjecture by Moreto, Jaikin-Zapairin) \(rk(G) \) is bounded linearly by \(n(G, V) \).

\(dl(G) \) : derived length of a solvable group.

(Keller) : \(dl(G) \leq 24 \log n(G, V) + 364 \)

(Conjectured by Keller) : \(dl(G) \leq 6 \log n(G, V) + 6 \) (Follows from the problem for \(n=6 \))
Motivation

\begin{align*}
& a_{1,1} \quad \cdots \quad a_{1,n-1} \quad a_{1,n} \quad \cdots \\
& a_{2,1} \quad \cdots \quad a_{2,n-1} \quad a_{2,n} \quad \cdots \\
& \quad \vdots \quad \quad \quad \quad \quad \quad \quad \quad \quad \vdots \quad \quad \quad \quad \quad \quad \quad \quad \quad \vdots \\
& a_{n,1} \quad \cdots \quad \cdots \quad a_{n,n} \quad \cdots
\end{align*}

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.
- (Conjecture by Moreto, Jaikin-Zapairin) $rk(G)$ is bounded linearly by $n(G, V)$.
- $dl(G)$: derived length of a solvable group.
- (Keller) : $dl(G) \leq 24 \log n(G, V) + 364$
- (Conjectured by Keller) : $dl(G) \leq 6 \log n(G, V) + 6$ (Follows from the problem for $n=6$)
- (Curtin O.) : Yup! Problem is true for any n.
Generalization

\[
\begin{array}{cccccc}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} & \cdots \\
 \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
 a_{n,1} & \cdots & \cdots & a_{n,n} & \cdots \\
\end{array}
\]

\[\text{(*, afterwards)}\]

\[a_{i,t} \not\in \{a_{i,1}, \cdots, a_{i,k} \} \text{ for row sets distinct at any point}\]

\[\{a_{i,1}, \cdots, a_{i,k}\} \neq \{a_{j,1}, \cdots, a_{j,k}\}\]

Observation:

Each \(a_{1,n-1}, a_{1,n}, a_{1,n+1}, \cdots\) have at least two options to choose from, to obey (*).

Those two options may have already appeared in the row set \(\{a_{i,1}, \cdots, a_{i,k}\}\). In terms of row sets, only consider when both are new.

Ex: 1234 | 567

\(B = \{1, 2, 3, 4, 5, 8\}\)

We choose 5, row set is same \(\{1, 2, 3, 4, 5, 6, 7\}\).

Ex: 1234 | 567

\(B = \{1, 2, 3, 4, 8, 9\}\)

We choose 9, row set is now \(\{1, 2, 3, 4, 5, 6, 7, 9\}\).
Generalization

\[
\begin{array}{cccccc}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} & \cdots \\
 \vdots & \cdots & \cdots & \cdots & \cdots \\
 a_{n,1} & \cdots & \cdots & a_{n,n} & \cdots \\
\end{array}
\]

(first n-1 columns) \(a_{i,1}, \cdots , a_{i,n-1} \) are mutually distinct.

(*, afterwards) \(a_{i,t} \not\in \{ a_{i,1}, \cdots , a_{i,n-2} \} \).

(row sets distinct at any point) \(\{ a_{i,1}, \cdots , a_{i,k} \} \neq \{ a_{j,1}, \cdots , a_{j,k} \} \)
Generalization

\[
\begin{array}{ccccccc}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} & \cdots \\
 \vdots & \cdots & \cdots & \cdots & \cdots \\
 a_{n,1} & \cdots & \cdots & a_{n,n} & \cdots
\end{array}
\]

(first n-1 columns) \(a_{i,1}, \cdots, a_{i,n-1} \) are mutually distinct.

(*, afterwards) \(a_{i,t} \not\in \{a_{1,1}, \cdots, a_{i,n-2}\} \).

(row sets distinct at any point) \(\{a_{i,1}, \cdots, a_{i,k}\} \neq \{a_{j,1}, \cdots, a_{j,k}\} \).

Observation: \(a_{1,n-1}, a_{1,n}, a_{1,n+1}, \cdots \) each have at least two options to choose from, to obey (*)
Generalization

\[
\begin{array}{cccccc}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} & \cdots \\
 \vdots & \cdots & \cdots & \cdots & \cdots \\
 a_{n,1} & \cdots & \cdots & a_{n,n} & \cdots \\
\end{array}
\]

(first n-1 columns) \(a_{i,1}, \cdots, a_{i,n-1}\) are mutually distinct.

(*, afterwards) \(a_{i,t} \not\in \{a_{i,1}, \cdots, a_{i,n-2}\}\).

(row sets distinct at any point) \(\{a_{i,1}, \cdots, a_{i,k}\} \neq \{a_{j,1}, \cdots, a_{j,k}\}\)

Observation: \(a_{1,n-1}, a_{1,n}, a_{1,n+1}, \cdots\) each have at least two options to choose from, to obey (*)

Those two options may have already appeared in the row set \(\{a_{i,1}, \cdots, a_{i,k}\}\). In terms of row sets, only consider when both are new.
Generalization

\[
\begin{array}{cccc}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} & \cdots \\
 \vdots & \cdots & \cdots & \cdots & \cdots \\
 a_{n,1} & \cdots & \cdots & a_{n,n} & \cdots \\
\end{array}
\]

(first n-1 columns) \(a_{i,1}, \cdots, a_{i,n-1} \) are mutually distinct.

(*, afterwards) \(a_{i,t} \notin \{ a_{i,1}, \cdots, a_{i,n-2} \} \).

(row sets distinct at any point) \(\{ a_{i,1}, \cdots, a_{i,k} \} \neq \{ a_{j,1}, \cdots, a_{j,k} \} \)

Observation: \(a_{1,n-1}, a_{1,n}, a_{1,n+1}, \cdots \) each have at least two options to choose from, to obey (*).

Those two options may have already appeared in the row set \(\{ a_{i,1}, \cdots, a_{i,k} \} \). In terms of row sets, only consider when both are new.

Ex: 1234|567?, \(B = \{1, 2, 3, 4, 5, 8\} \) we choose 5, row set is same \(\{1, 2, 3, 4, 5, 6, 7\} \).
Generalization

\[
\begin{array}{cccccc}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} & \cdots \\
 \vdots & \cdots & \cdots & \cdots & \cdots \\
 a_{n,1} & \cdots & \cdots & a_{n,n} & \cdots \\
\end{array}
\]

(first n-1 columns) \(a_{i,1}, \cdots, a_{i,n-1} \) are mutually distinct.

(*) afterwards \(a_{i,t} \not\in \{a_{i,1}, \cdots, a_{i,n-2}\} \).

(row sets distinct at any point) \(\{a_{i,1}, \cdots, a_{i,k}\} \neq \{a_{j,1}, \cdots, a_{j,k}\} \).

Observation: \(a_{1,n-1}, a_{1,n}, a_{1,n+1}, \cdots \) each have at least two options to choose from, to obey (*)

Those two options may have already appeared in the row set \(\{a_{i,1}, \cdots, a_{i,k}\} \). In terms of row sets, only consider when both are new.

Ex: 1234|567?, \(B = \{1, 2, 3, 4, 5, 8\} \) we choose 5, row set is same \(\{1, 2, 3, 4, 5, 6, 7\} \).

Ex: 1234|567?, \(B = \{1, 2, 3, 4, 8, 9\} \) we choose 9, row set is now \(\{1, 2, 3, 4, 5, 6, 7, 9\} \).
Growth of n-sets, where you are offered two options each time!
System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!
- Binary poset: Each node has two children below.

Boolean lattice B_n, n-binary posets rooted at 1, 2, 3, ···, n.

Can you find a chain for each binary poset so that the chains are pairwise disjoint?

$$(n-1)$$-partite graph. Hypergraph where edges are chains along the binary posets.

Can you find a system of distinct representative for the given n hypergraphs?

(Aharoni) Hall's theorem for hypergraphs... Not easy to use.
System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!
- Binary poset: Each node has two children below.
- Boolean lattice B_n, n-binary posets rooted at 1, 2, · · · , n.

Binary poset diagram:

```
1 2 3 4
12 13 14 23 24 34
123 124 134 234
```
System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!
- Binary poset: Each node has two children below.
- Boolean lattice B_n, n-binary posets rooted at 1, 2, \ldots, n.
- Can you find a chain for each binary poset so that the chains are pairwise disjoint?

(Aharoni) Hall’s theorem for hypergraphs... Not easy to use.
System of distinct representative of n binary posets

Growth of n-sets, where you are offered two options each time!

Binary poset: Each node has two children below.

Boolean lattice B_n, n-binary posets rooted at 1, 2, …, n.

Can you find a chain for each binary poset so that the chains are pairwise disjoint?

$(n - 1)$-partite graph. Hypergraph where edges are chains along the binary posets.
System of distinct representative of \(n \) binary posets

- Growth of \(n \)-sets, where you are offered two options each time!
- Binary poset: Each node has two children below.
- Boolean lattice \(B_n \), \(n \)-binary posets rooted at 1, 2, \(\cdots \), \(n \).
- Can you find a chain for each binary poset so that the chains are pairwise disjoint?
- \((n - 1)\)-partite graph. Hypergraph where edges are chains along the binary posets.
- Can you find a system of distinct representative for the given \(n \) hypergraphs?
Growth of n-sets, where you are offered two options each time!
Binary poset: Each node has two children below.
Boolean lattice B_n, n-binary posets rooted at 1, 2, \ldots, n.
Can you find a chain for each binary poset so that the chains are pairwise disjoint?
$(n-1)$-partite graph. Hypergraph where edges are chains along the binary posets.
Can you find a system of distinct representative for the given n hypergraphs?
(Aharoni) Hall’s theorem for hypergraphs... Not easy to use.
Adversary game version of the problem

If you can come up with a strategy that only requires you to look at one level at a time..

You start with \(n \) sets \(\{A_1, A_2, \ldots, A_n\} \), where \(A_1 = \{1\}, A_2 = \{2\}, \ldots, A_n = \{n\} \). Each turn, for each set \(A_i \), adversary chooses 2 elements in \([n] \setminus A_i\). For each set, you must pick the correct element among the 2 choices so that all \(A_i \)'s are still mutually distinct!

Ex:

\(A_1 = \{1\}, A_2 = \{2\}, A_3 = \{3\}, A_4 = \{4\} \).

Adversary offers \(\{2, 3\}, \{3, 4\}, \{4, 1\}, \{1, 2\} \) each.

Ex:

\(A_1 = \{1, 2\}, A_2 = \{2, 3\}, A_3 = \{3, 4\}, A_4 = \{4, 1\} \).

Adversary offers \(\{3, 4\}, \{4, 1\}, \{1, 2\} \) each.

Ex:

\(A_1 = \{1, 2, 3\}, A_2 = \{2, 3, 4\}, A_3 = \{3, 4, 1\}, A_4 = \{4, 1, 2\} \).

Done!

Can't be too crowded! Ex: 12345, 12346, 12347, 12356, 12367, offered 67, 57, 56, 47, 45.
Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\{A_1 = \{1\}, A_2 = \{2\}, \cdots, A_n = \{n\}\}$.

Ex: $A_1 = \{1\}$, $A_2 = \{2\}$, $A_3 = \{3\}$, $A_4 = \{4\}$. Adversary offers $\{2, \ 3\}$, $\{3, \ 4\}$, $\{4, \ 1\}$, $\{1, \ 2\}$ each.

Ex: $A_1 = \{1, 2\}$, $A_2 = \{2, 3\}$, $A_3 = \{3, 4\}$, $A_4 = \{4, 1\}$. Adversary offers $\{3, \ 4\}$, $\{4, \ 1\}$, $\{1, \ 2\}$, $\{2, \ 3\}$ each.

Ex: $A_1 = \{1, 2, 3\}$, $A_2 = \{2, 3, 4\}$, $A_3 = \{3, 4, 1\}$, $A_4 = \{4, 1, 2\}$. Adversary offers $\{3, \ 4\}$, $\{4, \ 1\}$, $\{1, \ 2\}$, $\{2, \ 3\}$ each.

Done!

Can't be too crowded! Ex: 12345, 12346, 12347, 12356, 12367, offered 67, 57, 56, 47, 45.
Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time.
- You start with \(n \) sets \(\{ A_1 = \{1\}, A_2 = \{2\}, \cdots, A_n = \{n\} \} \).
- Each turn, for each set \(A_i \), adversary chooses 2 elements in \([n] \setminus A_i\).
Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with \(n \) sets \(\{ A_1 = \{1\}, A_2 = \{2\}, \ldots, A_n = \{n\} \} \).
- Each turn, for each set \(A_i \), adversary chooses 2 elements in \([n] \setminus A_i\).
- For each set, you must pick the correct element among the 2 choices so that all \(A_i \)'s are still mutually distinct!
Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time.
- You start with n sets $\{A_1 = \{1\}, A_2 = \{2\}, \ldots, A_n = \{n\}\}$.
- Each turn, for each set A_i, adversary chooses 2 elements in $[n] \setminus A_i$.
- For each set, you must pick the correct element among the 2 choices so that all A_i’s are still mutually distinct!
- You want to keep growing until they have cardinality $n - 1$.

Ex: $A_1 = \{1\}, A_2 = \{2\}, A_3 = \{3\}, A_4 = \{4\}$. Adversary offers $\{2, 3\}, \{3, 4\}, \{4, 1\}, \{1, 2\}$ each.

Ex: $A_1 = \{1, 2\}, A_2 = \{2, 3\}, A_3 = \{3, 4\}, A_4 = \{4, 1\}$. Adversary offers $\{3, 4\}, \{4, 1\}, \{1, 2\}, \{2, 3\}$ each.

Ex: $A_1 = \{1, 2, 3\}, A_2 = \{2, 3, 4\}, A_3 = \{3, 4, 1\}, A_4 = \{4, 1, 2\}$. Adversary offers $\{3, 4\}, \{4, 1\}, \{1, 2\}, \{2, 3\}$ each.

Done! Can’t be too crowded! Ex: $12345, 12346, 12347, 12356, 12367$, offered $67, 57, 56, 47, 45$.

(TSU) A problem coming from group theory
Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\{A_1 = \{1\}, A_2 = \{2\}, \cdots, A_n = \{n\}\}$.
- Each turn, for each set A_i, adversary chooses 2 elements in $[n] \setminus A_i$.
- For each set, you must pick the correct element among the 2 choices so that all A_i’s are still mutually distinct!
- You want to keep growing until they have cardinality $n - 1$.
- Ex: $A_1 = \{1\}, A_2 = \{2\}, A_3 = \{3\}, A_4 = \{4\}$. Adversary offers $\{2, 3\}, \{3, 4\}, \{4, 1\}, \{1, 2\}$ each.
Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time.
- You start with n sets $\{A_1 = \{1\}, A_2 = \{2\}, \ldots, A_n = \{n\}\}$.
- Each turn, for each set A_i, adversary chooses 2 elements in $[n] \setminus A_i$.
- For each set, you must pick the correct element among the 2 choices so that all A_i’s are still mutually distinct!
- You want to keep growing until they have cardinality $n - 1$.
- Ex : $A_1 = \{1\}, A_2 = \{2\}, A_3 = \{3\}, A_4 = \{4\}$. Adversary offers $\{2, 3\}, \{3, 4\}, \{4, 1\}, \{1, 2\}$ each.
- Ex : $A_1 = \{1, 2\}, A_2 = \{2, 3\}, A_3 = \{3, 4\}, A_4 = \{4, 1\}$. Adversary offers $\{3, 4\}, \{4, 1\}, \{1, 2\}, \{2, 3\}$ each.
Adversary game version of the problem

If you can come up with a strategy that only requires you to look at one level at a time..
You start with n sets \(\{A_1 = \{1\}, A_2 = \{2\}, \ldots, A_n = \{n\}\} \).
Each turn, for each set A_i, adversary chooses 2 elements in $[n] \setminus A_i$.
For each set, you must pick the correct element among the 2 choices so that all A_i's are still mutually distinct!
You want to keep growing until they have cardinality $n - 1$.
Ex : \(A_1 = \{1\}, A_2 = \{2\}, A_3 = \{3\}, A_4 = \{4\} \). Adversary offers \(\{2, 3\}, \{3, 4\}, \{4, 1\}, \{1, 2\} \) each.
Ex : \(A_1 = \{1, 2\}, A_2 = \{2, 3\}, A_3 = \{3, 4\}, A_4 = \{4, 1\} \). Adversary offers \(\{3, 4\}, \{4, 1\}, \{1, 2\}, \{2, 3\} \) each.
Ex : \(A_1 = \{1, 2, 3\}, A_2 = \{2, 3, 4\}, A_3 = \{3, 4, 1\}, A_4 = \{4, 1, 2\} \). Done!
Adversary game version of the problem

If you can come up with a strategy that only requires you to look at one level at a time..

You start with n sets $\{A_1 = \{1\}, A_2 = \{2\}, \ldots, A_n = \{n\}\}$.

Each turn, for each set A_i, adversary chooses 2 elements in $[n] \setminus A_i$.

For each set, you must pick the correct element among the 2 choices so that all A_i’s are still mutually distinct!

You want to keep growing until they have cardinality $n - 1$.

Ex : $A_1 = \{1\}, A_2 = \{2\}, A_3 = \{3\}, A_4 = \{4\}$. Adversary offers $\{2, 3\}, \{3, 4\}, \{4, 1\}, \{1, 2\}$ each.

Ex : $A_1 = \{1, 2\}, A_2 = \{2, 3\}, A_3 = \{3, 4\}, A_4 = \{4, 1\}$. Adversary offers $\{3, 4\}, \{4, 1\}, \{1, 2\}, \{2, 3\}$ each.

Ex : $A_1 = \{1, 2, 3\}, A_2 = \{2, 3, 4\}, A_3 = \{3, 4, 1\}, A_4 = \{4, 1, 2\}$. Done!

Can’t be too crowded! Ex : 12345, 12346, 12347, 12356, 12367, offered 67, 57, 56, 47, 45.
Additional comments
Additional comments

- Generalized Hall: Given hypergraphs H_1, \cdots, H_n, when can you find $e_i \in H_i$'s such that they are pairwise disjoint?

(Clean but is only sufficient): For any $I \subseteq [n]$, there is a matching (set of disjoint edges) M_I in $G_I = \bigcup I H_I$ which cannot be pinned (Not all edges of M_I are touched) by fewer than $|I|$ disjoint edges in G_I.

Sadly, this doesn't work even for cases like when all B's are the same!!

(Sufficient and necessary): For each $I \subseteq [n]$, you can find a matching M_I in G_I such that M_I cannot be pinned by fewer than $|I|$ edges from $\bigcup J \subseteq I M_J$.

For the adversary problem: we want to prevent the sets being too crowded. Try maintaining distance each step!

Required condition: For each $I \subseteq [n]$, let A_{i_1}, \cdots, A_{i_k} be the sets containing I in our collection. Then $|A_{i_1} \cup \cdots \cup A_{i_k}| \geq k + |I|$.

But still not enough..
Generalized Hall: Given hypergraphs H_1, \cdots, H_n, when can you find $e_i \in H_i$'s such that they are pairwise disjoint?

(Clean but is only sufficient): For any $I \subseteq [n]$, there is a matching (set of disjoint edges) M_I in $G_I = \bigcup I H_i$ which cannot be pinned (Not all edges of M_I are touched) by fewer than $|I|$ disjoint edges in G_I.
Generalized Hall: Given hypergraphs H_1, \ldots, H_n, when can you find $e_i \in H_i$'s such that they are pairwise disjoint?

(Clean but is only sufficient): For any $I \subseteq [n]$, there is a matching (set of disjoint edges) M_i in $G_i = \bigcup_i H_i$ which cannot be pinned (Not all edges of M_i are touched) by fewer than $|I|$ disjoint edges in G_i.

Sadly, this doesn’t work even for cases like when all B’s are the same!!
Generalized Hall: Given hypergraphs H_1, \cdots, H_n, when can you find $e_i \in H_i$'s such that they are pairwise disjoint?

(Clean but is only sufficient): For any $I \subseteq [n]$, there is a matching (set of disjoint edges) M_I in $G_I = \bigcup_i H_i$ which cannot be pinned (Not all edges of M_I are touched) by fewer than $|I|$ disjoint edges in G_I.

Sadly, this doesn’t work even for cases like when all B’s are the same!!

(Sufficient and necessary): For each $I \subseteq [n]$, you can find a matching M_I in G_I such that M_I cannot be pinned by fewer than $|I|$ edges from $\bigcup_{J \subseteq I} M_J$.

For the adversary problem: we want to prevent the sets being too crowded. Try maintaining distance each step!

Required condition: For each $I \subseteq [n]$, let A_{i1}, \cdots, A_{ik} be the sets containing I in our collection. Then $|A_{i1} \cup \cdots \cup A_{ik}| \geq k + |I|$.
Generalized Hall: Given hypergraphs H_1, \cdots, H_n, when can you find $e_i \in H_i$’s such that they are pairwise disjoint?

(Clean but is only sufficient): For any $I \subseteq [n]$, there is a matching (set of disjoint edges) M_I in $G_I = \bigcup_i H_i$ which cannot be pinned (Not all edges of M_I are touched) by fewer than $|I|$ disjoint edges in G_I.

Sadly, this doesn’t work even for cases like when all B's are the same!!

(Sufficient and necessary): For each $I \subseteq [n]$, you can find a matching M_I in G_I such that M_I cannot be pinned by few than $|I|$ edges from $\bigcup_{J \subseteq I} M_J$.

For the adversary problem: we want to prevent the sets being too crowded. Try maintaining distance each step!
Generalized Hall: Given hypergraphs H_1, \cdots, H_n, when can you find $e_i \in H_i$’s such that they are pairwise disjoint?

(Clean but is only sufficient) : For any $I \subseteq [n]$, there is a matching (set of disjoint edges) M_i in $G_i = \bigcup_i H_i$ which cannot be pinned (Not all edges of M_i are touched) by fewer than $|I|$ disjoint edges in G_i.

Sadly, this doesn’t work even for cases like when all B’s are the same!!

(Sufficient and necessary) : For each $I \subseteq [n]$, you can find a matching M_i in G_i such that M_i cannot be pinned by few than $|I|$ edges from $\bigcup_{J \subseteq I} M_J$.

For the adversary problem: we want to prevent the sets being too crowded. Try maintaining distance each step!

Required condition : For each $I \subseteq [n]$, let A_{i_1}, \cdots, A_{i_k} be the sets containing I in our collection. Then $|A_{i_1} \cup \cdots \cup A_{i_k}| \geq k + |I|$.
Generalized Hall: Given hypergraphs H_1, \cdots, H_n, when can you find $e_i \in H_i$’s such that they are pairwise disjoint?

(Clean but is only sufficient): For any $I \subseteq [n]$, there is a matching (set of disjoint edges) M_I in $G_I = \bigcup_i H_i$ which cannot be pinned (Not all edges of M_I are touched) by fewer than $|I|$ disjoint edges in G_I.

Sadly, this doesn’t work even for cases like when all B’s are the same!!

(Sufficient and necessary): For each $I \subseteq [n]$, you can find a matching M_I in G_I such that M_I cannot be pinned by few than $|I|$ edges from $\bigcup_{J \subseteq I} M_J$.

For the adversary problem: we want to prevent the sets being too crowded. Try maintaining distance each step!

Required condition: For each $I \subseteq [n]$, let A_{i_1}, \cdots, A_{i_k} be the sets containing I in our collection. Then $|A_{i_1} \cup \cdots \cup A_{i_k}| \geq k + |I|$.

But still not enough..