Odd behavior in the coefficients of reciprocals of binary power series

Katie Anders
University of Texas at Tyler

May 7, 2016

Introduction

Recall that every number has a unique binary representation and can be written as $\sum_{j=0}^{\infty} c_{j} 2^{j}$, where $c_{j} \in\{0,1\}$.

Introduction

Recall that every number has a unique binary representation and can be written as $\sum_{j=0}^{\infty} c_{j} 2^{j}$, where $c_{j} \in\{0,1\}$.

Question: What happens if we take the coefficients from a different set?

The Stern Sequence

Example: If we take coefficients from the set $\{0,1,2\}$, then the binary representation is no longer unique. For example, there are three ways to write $n=4$ as $\sum \epsilon_{i} 2^{i}, \epsilon_{i} \in\{0,1,2\}$:

$$
4=2 \cdot 1+1 \cdot 2=0 \cdot 1+0 \cdot 2+1 \cdot 2^{2}=0 \cdot 1+2 \cdot 2 .
$$

The Stern Sequence

Example: If we take coefficients from the set $\{0,1,2\}$, then the binary representation is no longer unique. For example, there are three ways to write $n=4$ as $\sum \epsilon_{i} 2^{i}, \epsilon_{i} \in\{0,1,2\}$:

$$
4=2 \cdot 1+1 \cdot 2=0 \cdot 1+0 \cdot 2+1 \cdot 2^{2}=0 \cdot 1+2 \cdot 2
$$

Taking coefficients from this set, the number of representations of $n-1$ corresponds to the nth term in the Stern sequence, which is defined by $s(2 n)=s(n)$ and $s(2 n+1)=s(n)+s(n+1)$, with $s(0)=0$ and $s(1)=1$.

															1		1															
															1	2	1															
														1	3	2	3	1														
												1	4	3	5	2	5	3	4	1												
								1	5	4	7	3	8	5	7	2	7	5	8	3	7	4	5	1								
1	6	5	9	4	11	7	10	3	11	8	13	5	12	7	9	2	9	7	12	5	13	8	11	3	10	7	11	4	9	5	6	1
...	14	11	19	8	21	13	18	5	17	12	19	7	16	9	11	2	11	9	16	7	19	12	17	5	18	13	21	8	19	11	14	

Generalizing the Ideas

Let $\mathcal{A}=\left\{0=a_{0}<a_{1}<\cdots<a_{j}\right\}$ denote a finite subset of \mathbb{N} containing 0 . Let $f_{\mathcal{A}}(n)$ denote the number of ways to write n in the form

$$
n=\sum_{k=0}^{\infty} \epsilon_{k} 2^{k}, \quad \epsilon_{k} \in \mathcal{A}
$$

Generalizing the Ideas

Let $\mathcal{A}=\left\{0=a_{0}<a_{1}<\cdots<a_{j}\right\}$ denote a finite subset of \mathbb{N} containing 0 . Let $f_{\mathcal{A}}(n)$ denote the number of ways to write n in the form

$$
n=\sum_{k=0}^{\infty} \epsilon_{k} 2^{k}, \quad \epsilon_{k} \in \mathcal{A}
$$

We associate to \mathcal{A} its characteristic function $\chi_{\mathcal{A}}(n)$ and the generating function

$$
\phi_{\mathcal{A}}(x):=\sum_{n=0}^{\infty} \chi_{\mathcal{A}}(n) x^{n}=\sum_{a \in \mathcal{A}} x^{a}=1+x^{a_{1}}+\cdots+x^{a_{j}}
$$

Product Representation

Denote the generating function of $f_{\mathcal{A}}(n)$ by

$$
F_{\mathcal{A}}(x):=\sum_{n=0}^{\infty} f_{\mathcal{A}}(n) x^{n}
$$

Product Representation

Denote the generating function of $f_{\mathcal{A}}(n)$ by

$$
F_{\mathcal{A}}(x):=\sum_{n=0}^{\infty} f_{\mathcal{A}}(n) x^{n} .
$$

Viewing the number of ways to write n as a partition problem, we obtain the following product representation for $F_{\mathcal{A}}(x)$.

$$
F_{\mathcal{A}}(x)=\prod_{k=0}^{\infty}\left(1+x^{a_{1} 2^{k}}+\cdots+x^{a_{j} 2^{k}}\right)=\prod_{k=0}^{\infty} \phi_{\mathcal{A}}\left(x^{2^{k}}\right)
$$

In Congruence Properties of Binary Partition Functions, Anders, Dennsion, Lansing, and Reznick studied the behavior of $\left(f_{\mathcal{A}}(n)\right) \bmod 2$. Theorem 1.1 states that

$$
\phi_{\mathcal{A}}(x) F_{\mathcal{A}}(x)=1 \quad \text { in } \mathbb{F}_{2}[x] .
$$

In Congruence Properties of Binary Partition Functions, Anders, Dennsion, Lansing, and Reznick studied the behavior of $\left(f_{\mathcal{A}}(n)\right) \bmod 2$. Theorem 1.1 states that

$$
\phi_{\mathcal{A}}(x) F_{\mathcal{A}}(x)=1 \quad \text { in } \mathbb{F}_{2}[x] .
$$

We can make similar definitions for an infinite set \mathcal{A} containing 0 , and the above result still applies. This relates our work to work by Cooper, Eichhorn, and O'Bryant.

Return to the Stern Sequence

n	$f_{\{0,1,2\}}(n)$	$s(n)$	n	$f_{\{0,1,2\}}(n)$	$s(n)$
0	1	0	9	3	4
1	1	1	10	5	3
2	2	1	11	2	5
3	1	2	12	5	2
4	3	1	13	3	5
5	2	3	14	4	3
6	3	2	15	1	4
7	1	3	16	5	1
8	4	1			

Stern noticed in 1858 that the parity of $s(n)$ is periodic with period 3, and Reznick proved in 1989 that $s(n)=f_{\{0,1,2\}}(n-1)$.

Example

Note that $\phi_{\{0,1,2\}}(x)=1+x+x^{2}$, and applying the theorem, we see that in $F_{2}[[x]]$,

$$
\begin{aligned}
F_{\{0,1,2\}}(x) & =\frac{1}{1+x+x^{2}} \\
& =\frac{1+x}{1+x^{3}} \\
& =(1+x)\left(1+x^{3}+x^{6}+\cdots\right) \\
& =1+x+x^{3}+x^{4}+x^{6}+x^{7}+\cdots
\end{aligned}
$$

Another Example

Dennison observed in her thesis that if $\mathcal{A}=\{0,1,3\}, f_{\mathcal{A}}(n)$ is periodic with period 7 and each period has four odd terms. Specifically, $f_{\mathcal{A}}(n)$ is odd when $n \equiv 0,1,2,4(\bmod 7)$.

Another Example

Dennison observed in her thesis that if $\mathcal{A}=\{0,1,3\}, f_{\mathcal{A}}(n)$ is periodic with period 7 and each period has four odd terms. Specifically, $f_{\mathcal{A}}(n)$ is odd when $n \equiv 0,1,2,4(\bmod 7)$.

Using our main theorem, we find that in $F_{2}[[x]]$,

$$
F_{\{0,1,3\}}(x)=\frac{1}{1+x+x^{3}}=\frac{1+x+x^{2}+x^{4}}{1+x^{7}}
$$

Similarly, Dennison noted that if $\mathcal{A}=\{0,2,3\}, f_{\mathcal{A}}(n)$ is periodic with period 7 and each period has four odd terms, which occur when $n \equiv 0,2,3,4(\bmod 7)$.

Similarly, Dennison noted that if $\mathcal{A}=\{0,2,3\}, f_{\mathcal{A}}(n)$ is periodic with period 7 and each period has four odd terms, which occur when $n \equiv 0,2,3,4(\bmod 7)$.

Again, it follows from our main theorem that

$$
F_{\{0,2,3\}}(x)=\frac{1}{1+x^{2}+x^{3}}=\frac{1+x^{2}+x^{3}+x^{4}}{1+x^{7}}
$$

Definitions and Observations

- Since \mathcal{A} is finite, $\phi_{\mathcal{A}}(x)$ is a polynomial in $\mathbb{F}_{2}[x]$.

Definitions and Observations

- Since \mathcal{A} is finite, $\phi_{\mathcal{A}}(x)$ is a polynomial in $\mathbb{F}_{2}[x]$.
- For any polynomial $p(x) \in \mathbb{F}_{2}[x]$, let

$$
\ell(p)=\text { length }(p)=\text { number of terms in } p .
$$

Definitions and Observations

- Since \mathcal{A} is finite, $\phi_{\mathcal{A}}(x)$ is a polynomial in $\mathbb{F}_{2}[x]$.
- For any polynomial $p(x) \in \mathbb{F}_{2}[x]$, let

$$
\ell(p)=\text { length }(p)=\text { number of terms in } p .
$$

- Let $D=D(p(x))$ denote the order of $p(x)$, the smallest integer D such that $p(x) \mid 1+x^{D}$. Whenever $p(0)=1$, such a D exists.

Definitions and Observations

- Since \mathcal{A} is finite, $\phi_{\mathcal{A}}(x)$ is a polynomial in $\mathbb{F}_{2}[x]$.
- For any polynomial $p(x) \in \mathbb{F}_{2}[x]$, let

$$
\ell(p)=\text { length }(p)=\text { number of terms in } p .
$$

- Let $D=D(p(x))$ denote the order of $p(x)$, the smallest integer D such that $p(x) \mid 1+x^{D}$. Whenever $p(0)=1$, such a D exists.
- Define $p^{*}(x)$ by $p(x) p^{*}(x)=1+x^{D}$.

An Example from Our Paper

$$
\text { Let } \begin{aligned}
\mathcal{A} & =\{0,1,4,9\} . \operatorname{In} \mathbb{F}_{2}[x] \\
\qquad \phi_{\mathcal{A}} & =1+x+x^{4}+x^{9}=(1+x)^{4}\left(1+x+x^{2}\right)\left(1+x^{2}+x^{3}\right) .
\end{aligned}
$$

An Example from Our Paper

$$
\text { Let } \begin{aligned}
\mathcal{A} & =\{0,1,4,9\} . \operatorname{In} \mathbb{F}_{2}[x] \\
\qquad \phi_{\mathcal{A}} & =1+x+x^{4}+x^{9}=(1+x)^{4}\left(1+x+x^{2}\right)\left(1+x^{2}+x^{3}\right)
\end{aligned}
$$

Quick computations show that the period of $\phi_{\mathcal{A}}$ is 84 . Recall that this means $\phi_{\mathcal{A}} \phi_{\mathcal{A}}^{*}=1+x^{84}$. Further computations show that $\phi_{\mathcal{A}}^{*}$ has 41 terms with exponents in the set $\{0,1,2,3, \ldots, 70,75\}$.

An Example from Our Paper

$$
\begin{aligned}
& \text { Let } \mathcal{A}=\{0,1,4,9\} . \ln \mathbb{F}_{2}[x] \text {, } \\
& \phi_{\mathcal{A}}=1+x+x^{4}+x^{9}=(1+x)^{4}\left(1+x+x^{2}\right)\left(1+x^{2}+x^{3}\right) .
\end{aligned}
$$

Quick computations show that the period of $\phi_{\mathcal{A}}$ is 84 . Recall that this means $\phi_{\mathcal{A}} \phi_{\mathcal{A}}^{*}=1+x^{84}$. Further computations show that $\phi_{\mathcal{A}}^{*}$ has 41 terms with exponents in the set $\{0,1,2,3, \ldots, 70,75\}$.
As we will see, this means that $\left(f_{\{0,1,4,9\}}(n) \bmod 2\right)$ is periodic with period 84 and has 41 odd terms and 43 even terms in each period.

We have

$$
\begin{equation*}
F_{\mathcal{A}}(x)=\frac{1}{\phi_{\mathcal{A}}(x)}=\frac{\phi_{\mathcal{A}}^{*}(x)}{1+x^{D}} \quad \text { in } \mathbb{F}_{2}[x] . \tag{1}
\end{equation*}
$$

We have

$$
\begin{equation*}
F_{\mathcal{A}}(x)=\frac{1}{\phi_{\mathcal{A}}(x)}=\frac{\phi_{\mathcal{A}}^{*}(x)}{1+x^{D}} \quad \text { in } \mathbb{F}_{2}[x] \tag{1}
\end{equation*}
$$

If $\phi_{\mathcal{A}}^{*}(x)=\sum_{i=1}^{r} x^{b_{i}}$, where $0=b_{1}<\cdots<b_{r}=D-\max \mathcal{A}$, then

$$
f_{\mathcal{A}}(n) \equiv 1 \bmod 2 \Longleftrightarrow n \equiv b_{i} \bmod D \quad \text { for some } i
$$

We have

$$
\begin{equation*}
F_{\mathcal{A}}(x)=\frac{1}{\phi_{\mathcal{A}}(x)}=\frac{\phi_{\mathcal{A}}^{*}(x)}{1+x^{D}} \quad \text { in } \mathbb{F}_{2}[x] \tag{1}
\end{equation*}
$$

If $\phi_{\mathcal{A}}^{*}(x)=\sum_{i=1}^{r} x^{b_{i}}$, where $0=b_{1}<\cdots<b_{r}=D-\max \mathcal{A}$, then

$$
f_{\mathcal{A}}(n) \equiv 1 \bmod 2 \Longleftrightarrow n \equiv b_{i} \bmod D \quad \text { for some } i
$$

In any block of D consecutive integers,

$$
\begin{aligned}
\#\left\{n: f_{\mathcal{A}}(n) \text { is odd }\right\} & =\ell\left(\phi_{\mathcal{A}}^{*}\right)=\beta_{1}\left(\phi_{\mathcal{A}}\right) \\
\#\left\{n: f_{\mathcal{A}}(n) \text { is even }\right\} & =D-\ell\left(\phi_{\mathcal{A}}^{*}\right)=\beta_{0}\left(\phi_{\mathcal{A}}\right)
\end{aligned}
$$

In Reciprocals of Binary Power Series, which appeared in International Journal of Number Theory in 2006, Cooper, Eichhorn, and O'Bryant considered the fraction $\ell\left(\phi_{\mathcal{A}}^{*}\right) / D$, as we did in our paper. Here I instead consider the ordered pair

$$
\beta\left(\phi_{\mathcal{A}}\right):=\left(\beta_{1}\left(\phi_{\mathcal{A}}\right), \beta_{0}\left(\phi_{\mathcal{A}}\right)\right),
$$

which gives more detailed information than reduced fractions.

The first coordinate represents the number of times $f_{\mathcal{A}}(n)$ is odd in a minimal period, and the second coordinate represents the number of times $f_{\mathcal{A}}(n)$ is even in a minimal period.

Robust polynomials

Cooper, Eichhorn, and O'Bryant showed by direct computation that $\beta_{1}(f) \leq \beta_{0}(f)+1$ when $\operatorname{deg}(f)<8$.

Robust polynomials

Cooper, Eichhorn, and O'Bryant showed by direct computation that $\beta_{1}(f) \leq \beta_{0}(f)+1$ when $\operatorname{deg}(f)<8$.

We call a polynomial $f(x)$ robust if $\beta_{1}(f)>\beta_{0}(f)+1$. This is equivalent to saying that $\beta_{1}(f)>(D+1) / 2$, where D is the order of $f(x)$.

They also posed the problem of describing the set

$$
\left\{\frac{\beta_{1}(f)}{\beta_{0}(f)+\beta_{1}(f)}: f(x) \text { is a polynomial }\right\} .
$$

They also posed the problem of describing the set

$$
\left\{\frac{\beta_{1}(f)}{\beta_{0}(f)+\beta_{1}(f)}: f(x) \text { is a polynomial }\right\} .
$$

Since $f(x)=1+x^{D}$ has order D and $\beta_{1}(f)=\ell\left(f^{*}(x)\right)=1$, we see the greatest lower bound of the set is 0 . I will exhibit four sequences $\left\{f_{n}\right\}$ of polynomials such that $\beta_{1}\left(f_{n}\right)-\beta_{0}\left(f_{n}\right) \rightarrow \infty$, and, moreover,

$$
\lim _{n \rightarrow \infty} \frac{\beta_{1}\left(f_{n}\right)}{\beta_{0}\left(f_{n}\right)+\beta_{1}\left(f_{n}\right)}=1
$$

For n with standard binary representation

$$
n=2^{b_{k}}+2^{b_{k-1}}+\cdots+2^{b_{1}}+2^{b_{0}}
$$

define

$$
P_{n}(x)=x^{b_{k}}+x^{b_{k-1}}+\cdots+x^{b_{1}}+x^{b_{0}} .
$$

For n with standard binary representation

$$
n=2^{b_{k}}+2^{b_{k-1}}+\cdots+2^{b_{1}}+2^{b_{0}}
$$

define

$$
P_{n}(x)=x^{b_{k}}+x^{b_{k-1}}+\cdots+x^{b_{1}}+x^{b_{0}} .
$$

For example, $11=2^{3}+2^{1}+2^{0}$, so $P_{11}(x)=x^{3}+x+1$.

For n with standard binary representation

$$
n=2^{b_{k}}+2^{b_{k-1}}+\cdots+2^{b_{1}}+2^{b_{0}}
$$

define

$$
P_{n}(x)=x^{b_{k}}+x^{b_{k-1}}+\cdots+x^{b_{1}}+x^{b_{0}} .
$$

For example, $11=2^{3}+2^{1}+2^{0}$, so $P_{11}(x)=x^{3}+x+1$. For odd n, consider the fraction

$$
\frac{\ell\left(P_{n}^{*}\right)}{\operatorname{ord}\left(P_{n}\right)} .
$$

Reciprocal Polynomials

Definition

For a polynomial $f(x)$ of degree n, the reciprocal polynomial of $f(x)$ is $f_{(R)}(x):=x^{n} f(1 / x)$.

Reciprocal Polynomials

Definition

For a polynomial $f(x)$ of degree n, the reciprocal polynomial of $f(x)$ is $f_{(R)}(x):=x^{n} f(1 / x)$.

If $\operatorname{order}(f(x))=D$, then order $\left(f_{(R)}(x)\right)=D$. Thus $\beta(f(x))=\beta\left(f_{(R)}(x)\right)$, and the robustness of $f(x)$ is equivalent to the robustness of $f_{(R)}(x)$.

Reciprocal Polynomials

Definition

For a polynomial $f(x)$ of degree n, the reciprocal polynomial of $f(x)$ is $f_{(R)}(x):=x^{n} f(1 / x)$.

If $\operatorname{order}(f(x))=D$, then $\operatorname{order}\left(f_{(R)}(x)\right)=D$. Thus
$\beta(f(x))=\beta\left(f_{(R)}(x)\right)$, and the robustness of $f(x)$ is equivalent to the robustness of $f_{(R)}(x)$.

With $\mathcal{A}=\left\{0=a_{0}<a_{1}<\cdots<a_{j}\right\}$, define

$$
\tilde{\mathcal{A}}=\left\{0, a_{j}-a_{j-1}, \cdots, a_{j}-a_{1}, a_{j}\right\} .
$$

Then $\phi_{\mathcal{A},(R)}(x)=\phi_{\tilde{\mathcal{A}}}$.

First Theorem

Theorem
Fix $r \geq 3$.
(i) The order of $f_{r, 1}(x):=(1+x)\left(1+x^{2^{r}-1}+x^{2^{r}}\right)$ divides $4^{r}-1$.
(ii) $\beta_{1}\left(f_{r, 1}\right)=4^{r}-3^{r}$
(iii) Hence $\beta\left(f_{r, 1}\right)=\left(4^{r}-3^{r}, 3^{r}-1\right)$ and $f_{r, 1}(x)$ is robust.

Example

Consider $f_{3,1}(x)=1+x+x^{7}+x^{9}$.

Example

Consider $f_{3,1}(x)=1+x+x^{7}+x^{9}$.

- $\operatorname{order}\left(f_{3,1}(x)\right)=4^{3}-1=63$

Example

Consider $f_{3,1}(x)=1+x+x^{7}+x^{9}$.

- $\operatorname{order}\left(f_{3,1}(x)\right)=4^{3}-1=63$
- $\beta_{1}\left(f_{3,1}\right)=4^{3}-3^{3}=37$

Example

Consider $f_{3,1}(x)=1+x+x^{7}+x^{9}$.

- $\operatorname{order}\left(f_{3,1}(x)\right)=4^{3}-1=63$
- $\beta_{1}\left(f_{3,1}\right)=4^{3}-3^{3}=37$
- $\beta\left(f_{3,1}\right)=(37,26)$

Example

Consider $f_{3,1}(x)=1+x+x^{7}+x^{9}$.

- $\operatorname{order}\left(f_{3,1}(x)\right)=4^{3}-1=63$
- $\beta_{1}\left(f_{3,1}\right)=4^{3}-3^{3}=37$
- $\beta\left(f_{3,1}\right)=(37,26)$

Proof

Define

$$
g_{r, 1}(x)=\prod_{j=0}^{r-1}\left(1+x^{\left(2^{r}-1\right) 2^{j}}+x^{2^{r} 2^{j}}\right)+x^{4^{r}-2^{r}}
$$

By a lemma,

$$
\left(1+x^{2^{r}-1}+x^{2^{r}}\right) g_{r, 1}(x)=1+x^{4^{r}-1}
$$

Because

$$
g_{r, 1}(1)=\prod_{j=0}^{r-1}(1+1+1)+1 \equiv 0 \quad(\bmod 2)
$$

we know $(1+x) \mid g_{r, 1}(x)$.

Because

$$
g_{r, 1}(1)=\prod_{j=0}^{r-1}(1+1+1)+1 \equiv 0 \quad(\bmod 2)
$$

we know $(1+x) \mid g_{r, 1}(x)$.
Write $(1+x) h_{r, 1}(x)=g_{r, 1}(x)$, so

$$
\left(1+x^{2^{r}-1}+x^{2^{r}}\right)(1+x) h_{r, 1}(x)=1+x^{4^{r}-1} .
$$

Because

$$
g_{r, 1}(1)=\prod_{j=0}^{r-1}(1+1+1)+1 \equiv 0 \quad(\bmod 2)
$$

we know $(1+x) \mid g_{r, 1}(x)$.
Write $(1+x) h_{r, 1}(x)=g_{r, 1}(x)$, so

$$
\left(1+x^{2^{r}-1}+x^{2^{r}}\right)(1+x) h_{r, 1}(x)=1+x^{4^{r}-1}
$$

Thus $f_{r, 1}(x) \mid\left(1+x^{4^{r}-1}\right)$ and

$$
f_{r, 1} h_{r, 1}=1+x^{4^{r}-1}
$$

Rewrite

$$
g_{r, 1}(x)=\prod_{j=0}^{r-1}\left(1+x^{\left(2^{r}-1\right) 2^{j}}+x^{2^{r} 2^{j}}\right)+x^{4^{r}-2^{r}}
$$

to obtain

$$
g_{r, 1}(x)=\prod_{j=0}^{r-1}\left(1+x^{\left(2^{r}-1\right) 2^{j}}\left(1+x^{2^{j}}\right)\right)+x^{4^{r}-2^{r}}
$$

Expand the product and rewrite, using $1+x^{2^{j}}=(1+x)^{2^{j}}$, to obtain

$$
\begin{aligned}
g_{r, 1}(x) & =1+x^{4^{r}-2^{r}}+\sum_{n=1}^{2^{r}-1} x^{\left(2^{r}-1\right) n}(1+x)^{n} \\
& =(1+x)\left(\frac{1+x^{4^{r}-2^{r}}}{1+x}+\sum_{n=1}^{2^{r}-1} x^{\left(2^{r}-1\right) n}(1+x)^{n-1}\right) \\
& =(1+x)\left(\sum_{j=0}^{4 r-2^{r}-1} x^{j}+\sum_{n=1}^{2^{r}-1} x^{\left(2^{r}-1\right) n}(1+x)^{n-1}\right) .
\end{aligned}
$$

Ultimately, $\left(\beta_{1}\left(f_{r, 1}\right), \beta_{0}\left(f_{r, 1}\right)\right)=\left(4^{r}-3^{r}, 3^{r}-1\right)$.

Corollary
The reciprocal polynomials $f_{(R), r, 1}=(1+x)\left(1+x+x^{2^{r}}\right)$ are also robust with order dividing $4^{r}-1$.

Corollary

The reciprocal polynomials $f_{(R), r, 1}=(1+x)\left(1+x+x^{2^{r}}\right)$ are also robust with order dividing $4^{r}-1$.

Example
Consider $f_{(R), 3,1}(x)=1+x^{2}+x^{8}+x^{9}$.

- $\operatorname{order} f_{(R), 3,1}=4^{3}-1=63$
- $\beta\left(f_{(R), 3,1}\right)=(37,26)$

Theorem
Fix $r \geq 3$.
(i) The order of $f_{r, 2}(x):=(1+x)\left(1+x^{2^{r}}+x^{2^{r}+1}\right)$ divides $4^{r}+2^{r}+1$.
(ii) $\beta_{1}\left(f_{r, 2}\right)=4^{r}-3^{r}+2^{r}$
(iii) $\beta\left(f_{r, 2}\right)=\left(4^{r}-3^{r}+2^{r}, 3^{r}+1\right)$ and $f_{r, 2}(x)$ is robust.

Example

Consider $f_{3,2}(x)=1+x+x^{8}+x^{10}$.

Example

Consider $f_{3,2}(x)=1+x+x^{8}+x^{10}$.

- $\operatorname{order}\left(f_{3,2}(x)\right)=4^{3}+2^{3}+1=73$

Example

Consider $f_{3,2}(x)=1+x+x^{8}+x^{10}$.

- $\operatorname{order}\left(f_{3,2}(x)\right)=4^{3}+2^{3}+1=73$
- $\beta_{1}\left(f_{3,2}\right)=4^{3}-3^{3}+2^{3}=45$

Example

Consider $f_{3,2}(x)=1+x+x^{8}+x^{10}$.

- $\operatorname{order}\left(f_{3,2}(x)\right)=4^{3}+2^{3}+1=73$
- $\beta_{1}\left(f_{3,2}\right)=4^{3}-3^{3}+2^{3}=45$
- $\beta\left(f_{3,2}\right)=(45,28)$

Example

Consider $f_{3,2}(x)=1+x+x^{8}+x^{10}$.

- $\operatorname{order}\left(f_{3,2}(x)\right)=4^{3}+2^{3}+1=73$
- $\beta_{1}\left(f_{3,2}\right)=4^{3}-3^{3}+2^{3}=45$
- $\beta\left(f_{3,2}\right)=(45,28)$

Corollary
The reciprocal polynomials $f_{(R), r, 2}(x)=(1+x)\left(1+x+x^{2^{r}+1}\right)$ are also robust with order dividing $4^{r}+2^{r}+1$.

Corollary

The reciprocal polynomials $f_{(R), r, 2}(x)=(1+x)\left(1+x+x^{2^{r}+1}\right)$ are also robust with order dividing $4^{r}+2^{r}+1$.

Example
Consider $f_{(R), 3,2}(x)=1+x^{2}+x^{9}+x^{10}$.

- $\operatorname{order} f_{(R), 3,2}=73$
- $\beta\left(f_{(R), 3,2}\right)=(45,28)$

Future Research Ideas

- Finding more families of robust polynomials
- Determining the cluster points of

$$
\left\{\frac{\beta_{1}(f)}{\beta_{0}(f)+\beta_{1}(f)}: f(x) \text { is a polynomial }\right\}
$$

- Exploring properties of $f_{\mathcal{A}}(n)$ in bases other than 2

Acknowledgements

- The presenter acknowledges support from National Science Foundation grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students".
- The presenter also wishes to thank Professor Bruce Reznick for his time, ideas, and encouragement.

Recall $f_{\mathcal{A}}(n)$ is the number of ways to write

$$
n=\sum_{i=0}^{\infty} \epsilon_{i} 2^{i}, \text { where } \epsilon_{i} \in \mathcal{A}:=\left\{0=a_{0}<a_{1}<\cdots<a_{z}\right\} .
$$

Expanding the sum, we see that

$$
\begin{aligned}
n & =\epsilon_{0}+\epsilon_{1} 2+\epsilon_{2} 2^{2}+\cdots \\
& =\epsilon_{0}+2\left(\epsilon_{1}+\epsilon_{2} 2+\cdots\right)
\end{aligned}
$$

Recall $f_{\mathcal{A}}(n)$ is the number of ways to write

$$
n=\sum_{i=0}^{\infty} \epsilon_{i} 2^{i}, \text { where } \epsilon_{i} \in \mathcal{A}:=\left\{0=a_{0}<a_{1}<\cdots<a_{z}\right\}
$$

Expanding the sum, we see that

$$
\begin{aligned}
n & =\epsilon_{0}+\epsilon_{1} 2+\epsilon_{2} 2^{2}+\cdots \\
& =\epsilon_{0}+2\left(\epsilon_{1}+\epsilon_{2} 2+\cdots\right)
\end{aligned}
$$

We will now examine the asymptotic behavior of

$$
\sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n)
$$

Write $\mathcal{A}=\left\{0=2 b_{1}, 2 b_{2}, \ldots, 2 b_{s}, 2 c_{1}+1, \ldots, 2 c_{t}+1\right\}$.

Write $\mathcal{A}=\left\{0=2 b_{1}, 2 b_{2}, \ldots, 2 b_{s}, 2 c_{1}+1, \ldots, 2 c_{t}+1\right\}$.

If n is even, then $\epsilon_{0}=0,2 b_{2}, 2 b_{3}, \ldots$, or $2 b_{s}$ and

$$
f_{\mathcal{A}}(n)=f_{\mathcal{A}}\left(\frac{n}{2}\right)+f_{\mathcal{A}}\left(\frac{n-2 b_{2}}{2}\right)+f_{\mathcal{A}}\left(\frac{n-2 b_{3}}{2}\right)+\cdots+f_{\mathcal{A}}\left(\frac{n-2 b_{s}}{2}\right) .
$$

Write $\mathcal{A}=\left\{0=2 b_{1}, 2 b_{2}, \ldots, 2 b_{s}, 2 c_{1}+1, \ldots, 2 c_{t}+1\right\}$.

If n is even, then $\epsilon_{0}=0,2 b_{2}, 2 b_{3}, \ldots$, or $2 b_{s}$ and

$$
f_{\mathcal{A}}(n)=f_{\mathcal{A}}\left(\frac{n}{2}\right)+f_{\mathcal{A}}\left(\frac{n-2 b_{2}}{2}\right)+f_{\mathcal{A}}\left(\frac{n-2 b_{3}}{2}\right)+\cdots+f_{\mathcal{A}}\left(\frac{n-2 b_{s}}{2}\right) .
$$

Writing $n=2 \ell$, we have

$$
f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}\left(\ell-b_{2}\right)+f_{\mathcal{A}}\left(\ell-b_{3}\right)+\cdots+f_{\mathcal{A}}\left(\ell-b_{s}\right)
$$

If n is odd, then $\epsilon_{0}=2 c_{1}+1,2 c_{2}+1, \ldots$, or $2 c_{t}+1$, and

$$
\begin{aligned}
f_{\mathcal{A}}(n)= & f_{\mathcal{A}}\left(\frac{n-\left(2 c_{1}+1\right)}{2}\right)+f_{\mathcal{A}}\left(\frac{n-\left(2 c_{2}+1\right)}{2}\right) \\
& +\cdots+f_{\mathcal{A}}\left(\frac{n-\left(2 c_{t}+1\right)}{2}\right)
\end{aligned}
$$

If n is odd, then $\epsilon_{0}=2 c_{1}+1,2 c_{2}+1, \ldots$, or $2 c_{t}+1$, and

$$
\begin{aligned}
f_{\mathcal{A}}(n)= & f_{\mathcal{A}}\left(\frac{n-\left(2 c_{1}+1\right)}{2}\right)+f_{\mathcal{A}}\left(\frac{n-\left(2 c_{2}+1\right)}{2}\right) \\
& +\cdots+f_{\mathcal{A}}\left(\frac{n-\left(2 c_{t}+1\right)}{2}\right)
\end{aligned}
$$

Writing $n=2 \ell+1$, we have

$$
f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}\left(\ell-c_{1}\right)+f_{\mathcal{A}}\left(\ell-c_{2}\right)+\cdots+f_{\mathcal{A}}\left(\ell-c_{t}\right) .
$$

Example

If $\mathcal{A}=\{0,1,4,9\}=\{2 \cdot 0,2 \cdot 0+1,2 \cdot 2,2 \cdot 4+1\}$, then we have

$$
f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-2)
$$

and

$$
f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-4)
$$

For positive integers k, m, and a_{z}, let

$$
\omega_{k}(m)=\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right) \\
\vdots \\
f_{\mathcal{A}}\left(2^{k} m-a_{z}\right)
\end{array}\right)
$$

We will show that for a_{z} sufficiently large, there exists a fixed $\left(a_{z}+1\right) \times\left(a_{z}+1\right)$ matrix M such that for any $k \geq 0$,

$$
\omega_{k+1}=M \omega_{k}
$$

Example

Let $\mathcal{A}=\{0,1,3,4\}$. Then

$$
f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-2)
$$

and

$$
f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-1)
$$

$\{0,1,3,4\}$ continued

$$
\omega_{k+1}(m)=\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k+1} m\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-1\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-2\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-3\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-4\right)
\end{array}\right)=\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right)+f_{\mathcal{A}}\left(2^{k} m-2\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right)+f_{\mathcal{A}}\left(2^{k} m-2\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right)+f_{\mathcal{A}}\left(2^{k} m-3\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right)+f_{\mathcal{A}}\left(2^{k} m-3\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right)+f_{\mathcal{A}}\left(2^{k} m-4\right)
\end{array}\right) .
$$

$\{0,1,3,4\}$ continued

$$
\begin{aligned}
& \text { and } M=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \text { satisfies } \omega_{k+1}(m)=M \omega_{k}(m) \text {. }
\end{aligned}
$$

Theorem

Let $\mathcal{A}, f_{\mathcal{A}}(n), M$, and $\omega_{k}(m)$ be as above, with the additional assumption that there exists some odd $a_{i} \in \mathcal{A}$. Define

$$
s_{\mathcal{A}}(r)=\sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n)
$$

Let $|\mathcal{A}|$ denote the number of elements in the set \mathcal{A}. Then

$$
\lim _{r \rightarrow \infty} \frac{s_{\mathcal{A}}(r)}{|\mathcal{A}|^{r}}=c(\mathcal{A})
$$

where $c(\mathcal{A}) \in \mathbb{Q}$, so

$$
s_{\mathcal{A}}(r) \approx c(\mathcal{A})|\mathcal{A}|^{r}
$$

Example: $\mathcal{A}=\{0,2,3\}$

$$
\begin{aligned}
& f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-1) \\
& f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}(\ell-1) \\
& \quad\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k+1} m\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-1\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-2\right)
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right)
\end{array}\right)
\end{aligned}
$$

Example: $\mathcal{A}=\{0,2,3\}$

$$
\begin{aligned}
& f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-1) \\
& f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}(\ell-1) \\
& \quad\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k+1} m\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-1\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-2\right)
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right)
\end{array}\right)
\end{aligned}
$$

The characteristic polynomial of M is $g(x)=-(x-1)\left(x^{2}-x-1\right)$.

$\{0,2,3\}$ continued

$$
\begin{aligned}
s_{\mathcal{A}}(r) & =\sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n) \\
& =\sum_{n=2^{r-1}}^{2^{r}-1}\left(f_{\mathcal{A}}(2 n)+f_{\mathcal{A}}(2 n+1)\right) \\
& =\sum_{n=2^{r-1}}^{2^{r}-1}\left(f_{\mathcal{A}}(n)+f_{\mathcal{A}}(n-1)+f_{\mathcal{A}}(n-1)\right) \\
& =s_{\mathcal{A}}(r-1)+2 \sum_{n=2^{r-1}}^{2^{r-1}} f_{\mathcal{A}}(n-1)
\end{aligned}
$$

$$
\begin{aligned}
s_{\mathcal{A}}(r) & =s_{\mathcal{A}}(r-1)+2 \sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n)+2 f_{\mathcal{A}}\left(2^{r-1}-1\right)-2 f_{\mathcal{A}}\left(2^{r}-1\right) \\
& =3 s_{\mathcal{A}}(r-1)+2 f_{\mathcal{A}}\left(2^{r-1}-1\right)-2 f_{\mathcal{A}}\left(2^{r}-1\right) \\
& =3 s_{\mathcal{A}}(r-1)+2 F_{r-2}-2 F_{r-1} \\
& =3 s_{\mathcal{A}}(r-1)-2 F_{r-3}
\end{aligned}
$$

- Solution to homogeneous recurrence relation

$$
s_{\mathcal{A}}(r)=c_{1} 3^{r}
$$

- Solution to inhomogeneous recurrence relation

$$
s_{\mathcal{A}}(r)=c_{1} 3^{r}+c_{2} \phi^{r}+c_{3} \bar{\phi}^{r}+c_{4}(1)^{r}
$$

$$
\begin{aligned}
s_{\mathcal{A}}(r+2)-s_{\mathcal{A}}(r+1)-s_{\mathcal{A}}(r)= & c_{1} 3^{r}\left(3^{2}-3-1\right)+c_{2} \phi^{r}\left(\phi^{2}-\phi-1\right) \\
& +c_{3} \bar{\phi}^{r}\left(\bar{\phi}^{2}-\bar{\phi}-1\right)+c_{4}\left(1^{2}-1-1\right) \\
= & c_{1} 3^{r} \cdot 5-c_{4}
\end{aligned}
$$

$$
\begin{aligned}
s_{\mathcal{A}}(r+2)-s_{\mathcal{A}}(r+1)-s_{\mathcal{A}}(r)= & c_{1} 3^{r}\left(3^{2}-3-1\right)+c_{2} \phi^{r}\left(\phi^{2}-\phi-1\right) \\
& +c_{3} \bar{\phi}^{r}\left(\bar{\phi}^{2}-\bar{\phi}-1\right)+c_{4}\left(1^{2}-1-1\right) \\
= & c_{1} 3^{r} \cdot 5-c_{4}
\end{aligned}
$$

We can plug in $r=0$ and $r=1$ and compute sums to solve and find that $c_{1}=\frac{2}{5}$. Hence

$$
\lim _{r \rightarrow \infty} \frac{s_{\mathcal{A}}(r)}{|\mathcal{A}|^{r}}=\lim _{r \rightarrow \infty} \frac{s_{\{0,2,3\}}(r)}{4^{r}}=\frac{2}{5}
$$

Proof

Let $g(\lambda):=\operatorname{det}(M-\lambda I)$ be the characteristic polynomial of M with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{y}$, where each λ_{i} has multiplicity e_{i}, so

$$
g(\lambda)=\sum_{k=0}^{a_{z}+1} \alpha_{k} \lambda^{k}
$$

By Cayley-Hamilton, we know that $g(M)=0$. Thus we have

$$
0=g(M)=\sum_{k=0}^{a_{z}+1} \alpha_{k} M^{k}
$$

and hence, for all r,

$$
0=\left(\sum_{k=0}^{a_{z}+1} \alpha_{k} M^{k}\right) \omega_{r}(m)=\sum_{k=0}^{a_{z}+1} \alpha_{k} \omega_{r+k}(m) .
$$

$$
\begin{aligned}
& \text { Let } I_{r}=\left\{2^{r}, 2^{r}+1,2^{r}+2, \ldots, 2^{r+1}-1\right\} \text {. Then } \\
& I_{r}=2 I_{r-1} \cup\left(2 I_{r-1}+1\right) . \text { Thus } \\
& \qquad \begin{aligned}
& s_{\mathcal{A}}(r)=\sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n) \\
&= \sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(2 n)+f_{\mathcal{A}}(2 n+1) \\
&= \sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n)+f_{\mathcal{A}}\left(n-b_{2}\right)+\cdots+f_{\mathcal{A}}\left(n-b_{s}\right) \\
& \quad+f_{\mathcal{A}}\left(n-c_{1}\right)+\cdots+f_{\mathcal{A}}\left(n-c_{t}\right) .
\end{aligned}
\end{aligned}
$$

Now

$$
\sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n-k)=\sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n)+\sum_{j=1}^{k}\left(f_{\mathcal{A}}\left(2^{r-1}-j\right)-f\left(2^{r}-j\right)\right)
$$

so

$$
s_{\mathcal{A}}(r)=|\mathcal{A}| \sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n)+h(r)=|\mathcal{A}| s_{\mathcal{A}}(r-1)+h(r),
$$

where h_{r} is such that

$$
\sum_{k=0}^{a_{z}+1} \alpha_{k} h(r+k)=0
$$

The solution to this inhomogeneous recurrence relation is of the form

$$
s_{\mathcal{A}}(r)=c_{1}|\mathcal{A}|^{r}+\sum_{i=1}^{y} p_{i}\left(\lambda_{i}\right),
$$

where $p_{i}\left(\lambda_{i}\right)=\sum_{j=1}^{e_{i}} c_{i j} r^{j-1} \lambda_{i}^{r}$.

We can compute $\sum_{k=0}^{a_{z}+1} \alpha_{k} s_{\mathcal{A}}(r+k)$, and for sufficiently large r, we have

$$
\sum_{k=0}^{a_{z}+1} \alpha_{k} s_{\mathcal{A}}(r+k)=c_{1} \sum_{k=0}^{a_{z}+1} \alpha_{k}|\mathcal{A}|^{r+k}+0=c_{1}|\mathcal{A}|^{r} g(|\mathcal{A}|)
$$

Then we can solve for c_{1} to see that

$$
c_{1}=\frac{\sum_{k=0}^{a_{z}+1} \alpha_{k} s_{\mathcal{A}}(r+k)}{|\mathcal{A}|^{r} g(|\mathcal{A}|)}
$$

\mathcal{A}	$c(\mathcal{A})$	$\mathrm{N}(c(\mathcal{A}))$	\mathcal{A}	$c(\mathcal{A})$	$\mathrm{N}(c(\mathcal{A}))$
$\{0,1,2\}$	1	1.000	$\{0,1,3\}$	$\frac{4}{5}$	0.800
$\{0,1,4\}$	$\frac{5}{8}$	0.625	$\{0,1,5\}$	$\frac{14}{25}$	0.560
$\{0,1,6\}$	$\frac{425}{852}$	0.499	$\{0,1,7\}$	$\frac{176}{391}$	0.450
$\{0,1,8\}$	$\frac{137}{338}$	0.405	$\{0,1,9\}$	$\frac{1448}{3775}$	0.384
$\{0,1,10\}$	$\frac{1950}{5527}$	0.360	$\{0,1,11\}$	$\frac{3223}{9476}$	0.340
$\{0,1,12\}$	$\frac{2020}{6283}$	0.322	$\{0,1,13\}$	$\frac{47228}{154123}$	0.306
$\{0,1,14\}$	$\frac{35624}{122411}$	0.291	$\{0,1,15\}$	$\frac{699224}{2501653}$	0.280

\mathcal{A}	$c(\mathcal{A})$	$\tilde{\mathcal{A}}$	$c(\tilde{\mathcal{A}})$
$\{0,1,2,4\}$	$\frac{7}{11}$	$\{0,2,3,4\}$	$\frac{3}{11}$
$\{0,2,3,6\}$	$\frac{2531}{9536}$	$\{0,3,4,6\}$	$\frac{1344}{9536}$
$\{0,1,6,9\}$	$\frac{3401207}{16513920}$	$\{0,3,8,9\}$	$\frac{1156032}{16513920}$
$\{0,1,7,9\}$	$\frac{132416}{655040}$	$\{0,2,8,9\}$	$\frac{51145}{655040}$
$\{0,4,5,6,9\}$	$\frac{4044}{83753}$	$\{0,3,4,5,9\}$	$\frac{6716}{83753}$

Theorem
Let $\mathcal{A}, f_{\mathcal{A}}(n)$ and $M=\left[m_{\alpha, \beta}\right]$ be as above. Define

$$
\tilde{\mathcal{A}}:=\left\{0, a_{z}-a_{z-1}, \ldots, a_{z}-a_{1}, a_{z}\right\} .
$$

Theorem
Let $\mathcal{A}, f_{\mathcal{A}}(n)$ and $M=\left[m_{\alpha, \beta}\right]$ be as above. Define

$$
\tilde{\mathcal{A}}:=\left\{0, a_{z}-a_{z-1}, \ldots, a_{z}-a_{1}, a_{z}\right\} .
$$

Let $N=\left[n_{\alpha, \beta}\right]$ be the $\left(a_{z}+1\right) \times\left(a_{z}+1\right)$ matrix such that

$$
\left(\begin{array}{c}
f_{\tilde{\mathcal{A}}}(2 n) \\
f_{\tilde{\mathcal{A}}}(2 n-1) \\
\vdots \\
f_{\tilde{\mathcal{A}}}\left(2 n-a_{z}\right)
\end{array}\right)=N\left(\begin{array}{c}
f_{\tilde{\mathcal{A}}}(n) \\
f_{\tilde{\mathcal{A}}}(n-1) \\
\vdots \\
f_{\tilde{\mathcal{A}}}\left(n-a_{z}\right)
\end{array}\right) .
$$

Theorem
Let $\mathcal{A}, f_{\mathcal{A}}(n)$ and $M=\left[m_{\alpha, \beta}\right]$ be as above. Define

$$
\tilde{\mathcal{A}}:=\left\{0, a_{z}-a_{z-1}, \ldots, a_{z}-a_{1}, a_{z}\right\} .
$$

Let $N=\left[n_{\alpha, \beta}\right]$ be the $\left(a_{z}+1\right) \times\left(a_{z}+1\right)$ matrix such that

$$
\left(\begin{array}{c}
f_{\tilde{\mathcal{A}}}(2 n) \\
f_{\tilde{\mathcal{A}}}(2 n-1) \\
\vdots \\
f_{\tilde{\mathcal{A}}}\left(2 n-a_{z}\right)
\end{array}\right)=N\left(\begin{array}{c}
f_{\tilde{\mathcal{A}}}(n) \\
f_{\tilde{\mathcal{A}}}(n-1) \\
\vdots \\
f_{\tilde{\mathcal{A}}}\left(n-a_{z}\right)
\end{array}\right) .
$$

Then $m_{\alpha, \beta}=n_{a_{z}-\alpha, a_{z}-\beta}$.

Proof

Recall we can write

$$
\mathcal{A}:=\left\{0,2 b_{1}, \ldots, 2 b_{s}, 2 c_{1}+1, \ldots, 2 c_{t}+1\right\}
$$

so that

$$
f_{\mathcal{A}}(2 n-2 j)=f_{\mathcal{A}}(n-j)+f_{\mathcal{A}}\left(n-j-b_{1}\right)+\cdots+f_{\mathcal{A}}\left(n-j-b_{s}\right)
$$

and

$$
f_{\mathcal{A}}(2 n-2 j-1)=f_{\mathcal{A}}\left(n-j-c_{1}-1\right)+\cdots+f_{\mathcal{A}}\left(n-j-c_{t}-1\right)
$$

for j sufficiently large.

Then $m_{\alpha, \beta}=1$
$\Longleftrightarrow f_{\mathcal{A}}(n-\beta)$ is a summand in the recursive sum that expresses $f_{\mathcal{A}}(2 n-\alpha)$
$\Longleftrightarrow 2 n-\alpha=2(n-\beta)+K$, where $K \in \mathcal{A}$
$\Longleftrightarrow 2 \beta-\alpha \in \mathcal{A}$.

Now $n_{a_{z}-\alpha, a_{z}-\beta}=1$
$\Longleftrightarrow f_{\tilde{\mathcal{A}}}\left(n-\left(a_{z}-\beta\right)\right)$ is a summand in the recursive sum that expresses $f_{\tilde{\mathcal{A}}}\left(2 n-\left(a_{z}-\alpha\right)\right)$
$\Longleftrightarrow 2 n-\left(a_{z}-\alpha\right)=2\left(n-\left(a_{z}-\beta\right)\right)+\tilde{K}$, where $\tilde{K} \in \tilde{\mathcal{A}}$
$\Longleftrightarrow a_{z}+\alpha-2 \beta=\tilde{K}$
$\Longleftrightarrow 2 \beta-\alpha \in \mathcal{A}$.

Thus $M=A^{-1} N A$, where

$$
A=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

so M and N have the same characteristic polynomial. Hence the denominator of $c(\mathcal{A})$ is the same as the denominator of $c(\tilde{\mathcal{A}})$.

Future Research Ideas

- Finding more families of robust polynomials
- Determining the cluster points of

$$
\left\{\frac{\beta_{1}(f)}{\beta_{0}(f)+\beta_{1}(f)}: f(x) \text { is a polynomial }\right\}
$$

- Finding formulas for $c(\mathcal{A})$
- Exploring properties of $f_{\mathcal{A}}(n)$ in bases other than 2

Let $f(x)$ be an element of $\mathbb{F}_{2}[x]$ with $\operatorname{deg}(f(x))=k$. Then Lidl \& Niederreiter's Finite Fields gives an upper bound of

$$
\left|\beta_{1}(f(x))-\beta_{0}(f(x))\right| \leq 2^{k / 2}
$$

Let $f(x)$ be an element of $\mathbb{F}_{2}[x]$ with $\operatorname{deg}(f(x))=k$. Then Lidl \& Niederreiter's Finite Fields gives an upper bound of

$$
\left|\beta_{1}(f(x))-\beta_{0}(f(x))\right| \leq 2^{k / 2}
$$

Thus

$$
\left|\beta_{1}\left(f_{3,1}(x)\right)-\beta_{0}\left(f_{3,1}(x)\right)\right|=37-26=11 \leq 2^{9 / 2} \approx 22.6
$$

and

$$
\left|\beta_{1}\left(f_{3,2}(x)\right)-\beta_{0}\left(f_{3,2}(x)\right)\right|=45-28=17 \leq 2^{10 / 2}=32
$$

In general,

$$
\begin{aligned}
\left|\beta_{1}\left(f_{r, 1}(x)\right)-\beta_{0}\left(f_{r, 1}(x)\right)\right| & =4^{r}-3^{r}-\left(3^{r}-1\right) \\
& =4^{r}-2 \cdot 3^{r}+1 \\
& \ll 2^{\frac{1}{2}\left(2^{r}+1\right)} \\
& =4^{2^{r-2}+\frac{1}{4}}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\beta_{1}\left(f_{r, 2}(x)\right)-\beta_{0}\left(f_{r, 2}(x)\right)\right| & =4^{r}-3^{r}+2^{r}-\left(3^{r}+1\right) \\
& =4^{r}-2 \cdot 3^{r}+2^{r}-1 \\
& \ll 2^{\frac{1}{2}\left(2^{r}+2\right)} \\
& =4^{2^{r-2}+\frac{1}{2}}
\end{aligned}
$$

Example: $\mathcal{A}=\{0,1,4\}$

$$
\begin{aligned}
& f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-2) \\
& f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}(\ell) \\
& \left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k+1} m\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-1\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-2\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-3\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-4\right)
\end{array}\right)=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right) \\
f_{\mathcal{A}}\left(2^{k} m-3\right) \\
f_{\mathcal{A}}\left(2^{k} m-4\right)
\end{array}\right)
\end{aligned}
$$

Example: $\mathcal{A}=\{0,1,4\}$

$$
\begin{aligned}
& f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-2) \\
& f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}(\ell) \\
& \left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k+1} m\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-1\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-2\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-3\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-4\right)
\end{array}\right)=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right) \\
f_{\mathcal{A}}\left(2^{k} m-3\right) \\
f_{\mathcal{A}}\left(2^{k} m-4\right)
\end{array}\right)
\end{aligned}
$$

The characteristic polynomial of M is $g(x)=\square(x-1)^{4}(x+=1)$.

$\{0,1,4\}$ continued

$$
\begin{aligned}
s_{\mathcal{A}}(r)= & \sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n) \\
= & \sum_{n=2^{r-1}}^{2^{r}-1}\left(f_{\mathcal{A}}(2 n)+f_{\mathcal{A}}(2 n+1)\right) \\
= & \sum_{n=2^{r-1}}^{2^{r-1}}\left(f_{\mathcal{A}}(n)+f_{\mathcal{A}}(n-2)+f_{\mathcal{A}}(n)\right) \\
= & 2 s_{\mathcal{A}}(r-1)+\sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n-2) \\
= & 3 s_{\mathcal{A}}(r-1)+f_{\mathcal{A}}\left(2^{r-1}-2\right)+f_{\mathcal{A}}\left(2^{r-1}-1\right) \\
& -f_{\mathcal{A}}\left(2^{r}-2\right)-f_{\mathcal{A}}\left(2^{r}-1\right)
\end{aligned}
$$

- Solution to homogeneous recurrence relation

$$
s_{\mathcal{A}}(r)=c_{1} 3^{r}
$$

- Solution to inhomogeneous recurrence relation

$$
s_{\mathcal{A}}(r)=c_{1} 3^{r}+c_{2}(-1)^{r}+c_{3}(1)^{r}+c_{4} r(1)^{r}+c_{5} r^{2}(1)^{r}+c_{6} r^{3}(1)^{r}
$$

- Hence

$$
\lim _{r \rightarrow \infty} \frac{s_{\mathcal{A}}(r)}{|\mathcal{A}|^{r}}=c_{1}
$$

