Odd behavior in the coefficients of reciprocals of binary power series

Katie Anders

University of Texas at Tyler

May 7, 2016

(日) (同) (三) (三)

UTTyler

Katie Anders

Introduction

Recall that every number has a unique binary representation and can be written as $\sum_{i=0}^{\infty} c_j 2^j$, where $c_j \in \{0, 1\}$.

UTTyler

Introduction

Recall that every number has a unique binary representation and can be written as $\sum_{i=0}^{\infty} c_j 2^j$, where $c_j \in \{0, 1\}$.

< < >> < </p>

UTTyler

Question: What happens if we take the coefficients from a different set?

The Stern Sequence

Example: If we take coefficients from the set $\{0, 1, 2\}$, then the binary representation is no longer unique. For example, there are three ways to write n = 4 as $\sum \epsilon_i 2^i$, $\epsilon_i \in \{0, 1, 2\}$:

$$4 = 2 \cdot 1 + 1 \cdot 2 = 0 \cdot 1 + 0 \cdot 2 + 1 \cdot 2^2 = 0 \cdot 1 + 2 \cdot 2.$$

UTTyler

The Stern Sequence

Example: If we take coefficients from the set $\{0, 1, 2\}$, then the binary representation is no longer unique. For example, there are three ways to write n = 4 as $\sum \epsilon_i 2^i$, $\epsilon_i \in \{0, 1, 2\}$:

$$4 = 2 \cdot 1 + 1 \cdot 2 = 0 \cdot 1 + 0 \cdot 2 + 1 \cdot 2^2 = 0 \cdot 1 + 2 \cdot 2.$$

Taking coefficients from this set, the number of representations of n-1 corresponds to the *n*th term in the Stern sequence, which is defined by s(2n) = s(n) and s(2n+1) = s(n) + s(n+1), with s(0) = 0 and s(1) = 1.

															1		1															
															1	2	1															
														1	3	2	3	1														
												1	4	3	5	2	5	3	4	1												
								1	5	4	7	3	8	5	7	2	7	5	8	3	7	4	5	1								
1	6	5	9	4	11	7	10	3	11	8	13	5	12	7	9	2	9	7	12	5	13	8	11	3	10	7	11	4	9	5	6	1
	14	11	19	8	21	13	18	5	17	12	19	7	16	9	11	2	11	9	16	7	19	12	17	5	18	13	21	8	19	11	14	

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

UTTyler

æ

イロト イヨト イヨト イヨト

Generalizing the Ideas

Let $\mathcal{A} = \{0 = a_0 < a_1 < \cdots < a_j\}$ denote a finite subset of \mathbb{N} containing 0. Let $f_{\mathcal{A}}(n)$ denote the number of ways to write n in the form

$$n=\sum_{k=0}^{\infty}\epsilon_k2^k,\quad\epsilon_k\in\mathcal{A}.$$

<ロ> <同> <同> < 回> < 回>

UTTyler

Generalizing the Ideas

Let $\mathcal{A} = \{0 = a_0 < a_1 < \cdots < a_j\}$ denote a finite subset of \mathbb{N} containing 0. Let $f_{\mathcal{A}}(n)$ denote the number of ways to write n in the form

$$n=\sum_{k=0}^{\infty}\epsilon_k 2^k, \quad \epsilon_k\in\mathcal{A}.$$

We associate to A its characteristic function $\chi_A(n)$ and the generating function

$$\phi_{\mathcal{A}}(x) := \sum_{n=0}^{\infty} \chi_{\mathcal{A}}(n) x^n = \sum_{a \in \mathcal{A}} x^a = 1 + x^{a_1} + \dots + x^{a_j}.$$

(日) (同) (三) (三)

UTTyler

Katie Anders

Product Representation

Denote the generating function of $f_A(n)$ by

$$F_{\mathcal{A}}(x) := \sum_{n=0}^{\infty} f_{\mathcal{A}}(n) x^n.$$

<ロ> <四> <四> <日> <日> <日</p>

UTTyler

Katie Anders

Product Representation

Denote the generating function of $f_A(n)$ by

$$F_{\mathcal{A}}(x) := \sum_{n=0}^{\infty} f_{\mathcal{A}}(n) x^n.$$

Viewing the number of ways to write *n* as a partition problem, we obtain the following product representation for $F_A(x)$.

$$F_{\mathcal{A}}(x) = \prod_{k=0}^{\infty} \left(1 + x^{a_1 2^k} + \dots + x^{a_j 2^k} \right) = \prod_{k=0}^{\infty} \phi_{\mathcal{A}}(x^{2^k})$$

(日) (同) (三) (三)

UTTyler

Katie Anders

In Congruence Properties of Binary Partition Functions, Anders, Dennsion, Lansing, and Reznick studied the behavior of $(f_A(n)) \mod 2$. Theorem 1.1 states that

 $\phi_{\mathcal{A}}(x)F_{\mathcal{A}}(x) = 1$ in $\mathbb{F}_2[x]$.

In Congruence Properties of Binary Partition Functions, Anders, Dennsion, Lansing, and Reznick studied the behavior of $(f_A(n)) \mod 2$. Theorem 1.1 states that

$$\phi_{\mathcal{A}}(x)F_{\mathcal{A}}(x) = 1$$
 in $\mathbb{F}_2[x]$.

We can make similar definitions for an infinite set A containing 0, and the above result still applies. This relates our work to work by Cooper, Eichhorn, and O'Bryant.

Image: A math a math

Return to the Stern Sequence

п	$f_{\{0,1,2\}}(n)$	s(n)	n	$f_{\{0,1,2\}}(n)$	s(n)
0	1	0	9	3	4
1	1	1	10	5	3
2	2	1	11	2	5
3	1	2	12	5	2
4	3	1	13	3	5
5	2	3	14	4	3
6	3	2	15	1	4
7	1	3	16	5	1
8	4	1			

Stern noticed in 1858 that the parity of s(n) is periodic with period 3, and Reznick proved in 1989 that $s(n) = f_{\{0,1,2\}}(n-1)$.

Odd behavior in the coefficients of reciprocals of binary power series

(a)

Example

Note that $\phi_{\{0,1,2\}}(x) = 1 + x + x^2$, and applying the theorem, we see that in $F_2[[x]]$,

$$F_{\{0,1,2\}}(x) = \frac{1}{1+x+x^2}$$

= $\frac{1+x}{1+x^3}$
= $(1+x)(1+x^3+x^6+\cdots)$
= $1+x+x^3+x^4+x^6+x^7+\cdots$

<ロ> <同> <同> < 回> < 回>

æ

UTTyler

Katie Anders

Another Example

Dennison observed in her thesis that if $\mathcal{A} = \{0, 1, 3\}, f_{\mathcal{A}}(n)$ is periodic with period 7 and each period has four odd terms. Specifically, $f_{\mathcal{A}}(n)$ is odd when $n \equiv 0, 1, 2, 4 \pmod{7}$.

(日) (同) (三) (三)

UTTyler

Another Example

Dennison observed in her thesis that if $\mathcal{A} = \{0, 1, 3\}, f_{\mathcal{A}}(n)$ is periodic with period 7 and each period has four odd terms. Specifically, $f_{\mathcal{A}}(n)$ is odd when $n \equiv 0, 1, 2, 4 \pmod{7}$.

Using our main theorem, we find that in $F_2[[x]]$,

$$F_{\{0,1,3\}}(x) = \frac{1}{1+x+x^3} = \frac{1+x+x^2+x^4}{1+x^7}.$$

(日) (同) (三) (三)

UTTyler

Similarly, Dennison noted that if $\mathcal{A} = \{0, 2, 3\}, f_{\mathcal{A}}(n)$ is periodic with period 7 and each period has four odd terms, which occur when $n \equiv 0, 2, 3, 4 \pmod{7}$.

UTTyler

Similarly, Dennison noted that if $\mathcal{A} = \{0, 2, 3\}, f_{\mathcal{A}}(n)$ is periodic with period 7 and each period has four odd terms, which occur when $n \equiv 0, 2, 3, 4 \pmod{7}$.

Again, it follows from our main theorem that

$$F_{\{0,2,3\}}(x) = \frac{1}{1+x^2+x^3} = \frac{1+x^2+x^3+x^4}{1+x^7}$$

(日) (同) (三) (三)

UTTyler

Since \mathcal{A} is finite, $\phi_{\mathcal{A}}(x)$ is a polynomial in $\mathbb{F}_2[x]$.

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Katie Anders

- Since \mathcal{A} is finite, $\phi_{\mathcal{A}}(x)$ is a polynomial in $\mathbb{F}_2[x]$.
- For any polynomial $p(x) \in \mathbb{F}_2[x]$, let

 $\ell(p) = \text{length}(p) = \text{ number of terms in } p.$

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

- Since \mathcal{A} is finite, $\phi_{\mathcal{A}}(x)$ is a polynomial in $\mathbb{F}_2[x]$.
- For any polynomial $p(x) \in \mathbb{F}_2[x]$, let

 $\ell(p) = \text{length}(p) = \text{ number of terms in } p.$

Let D = D(p(x)) denote the order of p(x), the smallest integer D such that p(x) | 1 + x^D. Whenever p(0) = 1, such a D exists.

・ロン ・回と ・ヨン ・ ヨン

- Since \mathcal{A} is finite, $\phi_{\mathcal{A}}(x)$ is a polynomial in $\mathbb{F}_2[x]$.
- For any polynomial $p(x) \in \mathbb{F}_2[x]$, let

 $\ell(p) = \text{length}(p) = \text{ number of terms in } p.$

Let D = D(p(x)) denote the order of p(x), the smallest integer D such that p(x) | 1 + x^D. Whenever p(0) = 1, such a D exists.

・ロン ・回と ・ヨン ・ ヨン

• Define
$$p^*(x)$$
 by $p(x)p^*(x) = 1 + x^D$.

An Example from Our Paper

Let
$$\mathcal{A} = \{0, 1, 4, 9\}$$
. In $\mathbb{F}_2[x]$,
 $\phi_{\mathcal{A}} = 1 + x + x^4 + x^9 = (1 + x)^4 (1 + x + x^2)(1 + x^2 + x^3).$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

An Example from Our Paper

Let
$$\mathcal{A} = \{0, 1, 4, 9\}$$
. In $\mathbb{F}_2[x]$,
 $\phi_{\mathcal{A}} = 1 + x + x^4 + x^9 = (1 + x)^4 (1 + x + x^2) (1 + x^2 + x^3).$

Quick computations show that the period of ϕ_A is 84. Recall that this means $\phi_A \phi_A^* = 1 + x^{84}$. Further computations show that ϕ_A^* has 41 terms with exponents in the set $\{0, 1, 2, 3, \dots, 70, 75\}$.

UTTyler

An Example from Our Paper

Let
$$\mathcal{A} = \{0, 1, 4, 9\}$$
. In $\mathbb{F}_2[x]$,
 $\phi_{\mathcal{A}} = 1 + x + x^4 + x^9 = (1 + x)^4 (1 + x + x^2)(1 + x^2 + x^3).$

Quick computations show that the period of ϕ_A is 84. Recall that this means $\phi_A \phi_A^* = 1 + x^{84}$. Further computations show that ϕ_A^* has 41 terms with exponents in the set $\{0, 1, 2, 3, \dots, 70, 75\}$.

As we will see, this means that $(f_{\{0,1,4,9\}}(n) \mod 2)$ is periodic with period 84 and has 41 odd terms and 43 even terms in each period.

We have

$$F_{\mathcal{A}}(x) = \frac{1}{\phi_{\mathcal{A}}(x)} = \frac{\phi_{\mathcal{A}}^*(x)}{1+x^D} \quad \text{in } \mathbb{F}_2[x]. \tag{1}$$

・ロン ・回 と ・ヨン ・ヨン

≣ •⁄) ९.(UTTyler

Katie Anders

We have

$$F_{\mathcal{A}}(x) = \frac{1}{\phi_{\mathcal{A}}(x)} = \frac{\phi_{\mathcal{A}}^*(x)}{1+x^D} \quad \text{in } \mathbb{F}_2[x]. \tag{1}$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

If $\phi^*_{\mathcal{A}}(x) = \sum_{i=1}^r x^{b_i}$, where $0 = b_1 < \cdots < b_r = D - \max \mathcal{A}$, then

 $f_{\mathcal{A}}(n) \equiv 1 \mod 2 \iff n \equiv b_i \mod D$ for some *i*.

We have

$$F_{\mathcal{A}}(x) = \frac{1}{\phi_{\mathcal{A}}(x)} = \frac{\phi_{\mathcal{A}}^*(x)}{1+x^D} \quad \text{in } \mathbb{F}_2[x]. \tag{1}$$

・ロン ・回 と ・ ヨン ・ ヨン …

2

UTTyler

If $\phi^*_\mathcal{A}(x) = \sum_{i=1}^r x^{b_i}$, where $0 = b_1 < \cdots < b_r = D - \max \mathcal{A}$, then

 $f_{\mathcal{A}}(n) \equiv 1 \mod 2 \iff n \equiv b_i \mod D$ for some *i*.

In any block of D consecutive integers,

$$\#\{n: f_{\mathcal{A}}(n) \text{ is odd}\} = \ell(\phi_{\mathcal{A}}^*) = \beta_1(\phi_{\mathcal{A}}) \\ \#\{n: f_{\mathcal{A}}(n) \text{ is even}\} = D - \ell(\phi_{\mathcal{A}}^*) = \beta_0(\phi_{\mathcal{A}}).$$

Katie Anders

In Reciprocals of Binary Power Series, which appeared in International Journal of Number Theory in 2006, Cooper, Eichhorn, and O'Bryant considered the fraction $\ell(\phi_{\mathcal{A}}^*)/D$, as we did in our paper. Here I instead consider the ordered pair

$$\beta(\phi_{\mathcal{A}}) := (\beta_1(\phi_{\mathcal{A}}), \beta_0(\phi_{\mathcal{A}})),$$

which gives more detailed information than reduced fractions.

The first coordinate represents the number of times $f_A(n)$ is odd in a minimal period, and the second coordinate represents the number of times $f_A(n)$ is even in a minimal period.

< ロ > < 同 > < 回 > < 回 >

Robust polynomials

Cooper, Eichhorn, and O'Bryant showed by direct computation that $\beta_1(f) \leq \beta_0(f) + 1$ when deg(f) < 8.

UTTyler

Robust polynomials

Cooper, Eichhorn, and O'Bryant showed by direct computation that $\beta_1(f) \leq \beta_0(f) + 1$ when deg(f) < 8.

We call a polynomial f(x) robust if $\beta_1(f) > \beta_0(f) + 1$. This is equivalent to saying that $\beta_1(f) > (D+1)/2$, where D is the order of f(x).

(日) (同) (三) (三)

UTTyler

They also posed the problem of describing the set

$$\left\{\frac{\beta_1(f)}{\beta_0(f)+\beta_1(f)}:f(x) \text{ is a polynomial}\right\}.$$

<ロ> <四> <四> <日> <日> <日</p>

æ

UTTyler

Katie Anders

They also posed the problem of describing the set

$$\left\{\frac{\beta_1(f)}{\beta_0(f)+\beta_1(f)}:f(x) \text{ is a polynomial}\right\}.$$

Since $f(x) = 1 + x^D$ has order D and $\beta_1(f) = \ell(f^*(x)) = 1$, we see the greatest lower bound of the set is 0. I will exhibit four sequences $\{f_n\}$ of polynomials such that $\beta_1(f_n) - \beta_0(f_n) \rightarrow \infty$, and, moreover,

$$\lim_{n\to\infty}\frac{\beta_1(f_n)}{\beta_0(f_n)+\beta_1(f_n)}=1.$$

(a)

UTTyler

Katie Anders

For n with standard binary representation

$$n = 2^{b_k} + 2^{b_{k-1}} + \dots + 2^{b_1} + 2^{b_0},$$

define

$$P_n(x) = x^{b_k} + x^{b_{k-1}} + \cdots + x^{b_1} + x^{b_0}.$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Katie Anders

For n with standard binary representation

$$n = 2^{b_k} + 2^{b_{k-1}} + \dots + 2^{b_1} + 2^{b_0},$$

define

$$P_n(x) = x^{b_k} + x^{b_{k-1}} + \cdots + x^{b_1} + x^{b_0}.$$

・ロト ・回ト ・ヨト ・ヨト

э

UTTyler

For example, $11 = 2^3 + 2^1 + 2^0$, so $P_{11}(x) = x^3 + x + 1$.

Katie Anders

For n with standard binary representation

$$n = 2^{b_k} + 2^{b_{k-1}} + \dots + 2^{b_1} + 2^{b_0},$$

define

$$P_n(x) = x^{b_k} + x^{b_{k-1}} + \cdots + x^{b_1} + x^{b_0}.$$

For example, $11 = 2^3 + 2^1 + 2^0$, so $P_{11}(x) = x^3 + x + 1$. For odd *n*, consider the fraction

$$\frac{\ell\left(P_n^*\right)}{\operatorname{ord}(P_n)}.$$

・ロト ・回ト ・ヨト ・ヨト

UTTyler

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

UTTyler

æ

< ≣⇒

・ロン ・日子・ ・ ヨン

Reciprocal Polynomials

Definition

For a polynomial f(x) of degree *n*, the *reciprocal polynomial* of f(x) is $f_{(R)}(x) := x^n f(1/x)$.

UTTyler

Reciprocal Polynomials

Definition

For a polynomial f(x) of degree *n*, the *reciprocal polynomial* of f(x) is $f_{(R)}(x) := x^n f(1/x)$.

If $\operatorname{order}(f(x)) = D$, then $\operatorname{order}(f_{(R)}(x)) = D$. Thus $\beta(f(x)) = \beta(f_{(R)}(x))$, and the robustness of f(x) is equivalent to the robustness of $f_{(R)}(x)$.

UTTyler

Reciprocal Polynomials

Definition

For a polynomial f(x) of degree *n*, the *reciprocal polynomial* of f(x) is $f_{(R)}(x) := x^n f(1/x)$.

If $\operatorname{order}(f(x)) = D$, then $\operatorname{order}(f_{(R)}(x)) = D$. Thus $\beta(f(x)) = \beta(f_{(R)}(x))$, and the robustness of f(x) is equivalent to the robustness of $f_{(R)}(x)$.

With $\mathcal{A} = \{0 = a_0 < a_1 < \cdots < a_j\}$, define

$$\tilde{\mathcal{A}} = \{0, a_j - a_{j-1}, \cdots, a_j - a_1, a_j\}.$$

UTTyler

Then $\phi_{\mathcal{A},(R)}(x) = \phi_{\tilde{\mathcal{A}}}$.

First Theorem

Theorem Fix $r \ge 3$. (i) The order of $f_{r,1}(x) := (1+x)(1+x^{2^r-1}+x^{2^r})$ divides $4^r - 1$. (ii) $\beta_1(f_{r,1}) = 4^r - 3^r$ (iii) Hence $\beta(f_{r,1}) = (4^r - 3^r, 3^r - 1)$ and $f_{r,1}(x)$ is robust.

æ

UTTyler

Consider $f_{3,1}(x) = 1 + x + x^7 + x^9$.

Odd behavior in the coefficients of reciprocals of binary power series

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Consider
$$f_{3,1}(x) = 1 + x + x^7 + x^9$$
.
• order $(f_{3,1}(x)) = 4^3 - 1 = 63$

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

・ロト ・回ト ・ヨト ・ヨト

≣ •∕) ९.(UTTyler

Consider
$$f_{3,1}(x) = 1 + x + x^7 + x^9$$
.
• order $(f_{3,1}(x)) = 4^3 - 1 = 63$
• $\beta_1(f_{3,1}) = 4^3 - 3^3 = 37$

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

・ロト ・回ト ・ヨト ・ヨト

≣ •∕) ९.(UTTyler

Consider
$$f_{3,1}(x) = 1 + x + x^7 + x^9$$

• order $(f_{3,1}(x)) = 4^3 - 1 = 63$
• $\beta_1(f_{3,1}) = 4^3 - 3^3 = 37$
• $\beta(f_{3,1}) = (37, 26)$

.

・ロト ・回ト ・ヨト ・ヨト

2 UTTyler

Katie Anders

Consider
$$f_{3,1}(x) = 1 + x + x^7 + x^9$$

• order $(f_{3,1}(x)) = 4^3 - 1 = 63$
• $\beta_1(f_{3,1}) = 4^3 - 3^3 = 37$
• $\beta(f_{3,1}) = (37, 26)$

.

・ロト ・回ト ・ヨト ・ヨト

2 UTTyler

Katie Anders

Proof

Define

$$g_{r,1}(x) = \prod_{j=0}^{r-1} \left(1 + x^{(2^r-1)2^j} + x^{2^r 2^j} \right) + x^{4^r-2^r}.$$

By a lemma,

$$(1 + x^{2^r-1} + x^{2^r}) g_{r,1}(x) = 1 + x^{4^r-1}.$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Katie Anders

Because

$$g_{r,1}(1) = \prod_{j=0}^{r-1} (1+1+1) + 1 \equiv 0 \pmod{2},$$

we know $(1 + x) | g_{r,1}(x)$.

Odd behavior in the coefficients of reciprocals of binary power series

2

・ロト ・回ト ・ヨト ・ヨト

Because

$$g_{r,1}(1) = \prod_{j=0}^{r-1} (1+1+1) + 1 \equiv 0 \pmod{2},$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

we know $(1 + x) | g_{r,1}(x)$.

Write
$$(1 + x)h_{r,1}(x) = g_{r,1}(x)$$
, so
 $(1 + x^{2^r - 1} + x^{2^r})(1 + x)h_{r,1}(x) = 1 + x^{4^r - 1}.$

Katie Anders

Because

$$g_{r,1}(1) = \prod_{j=0}^{r-1} (1+1+1) + 1 \equiv 0 \pmod{2},$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

we know $(1 + x) | g_{r,1}(x)$.

Write
$$(1 + x)h_{r,1}(x) = g_{r,1}(x)$$
, so
 $(1 + x^{2^r - 1} + x^{2^r})(1 + x)h_{r,1}(x) = 1 + x^{4^r - 1}.$

Thus $f_{r,1}(x) \mid \left(1+x^{4^r-1}
ight)$ and $f_{r,1}h_{r,1}=1+x^{4^r-1}.$

Katie Anders

Rewrite

$$g_{r,1}(x) = \prod_{j=0}^{r-1} \left(1 + x^{(2^r-1)2^j} + x^{2^r 2^j} \right) + x^{4^r-2^r}$$

to obtain

$$g_{r,1}(x) = \prod_{j=0}^{r-1} \left(1 + x^{(2^r-1)2^j}(1+x^{2^j}) \right) + x^{4^r-2^r}.$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Katie Anders

Expand the product and rewrite, using $1 + x^{2^{j}} = (1 + x)^{2^{j}}$, to obtain

$$g_{r,1}(x) = 1 + x^{4^r - 2^r} + \sum_{n=1}^{2^r - 1} x^{(2^r - 1)n} (1 + x)^n$$

= $(1 + x) \left(\frac{1 + x^{4^r - 2^r}}{1 + x} + \sum_{n=1}^{2^r - 1} x^{(2^r - 1)n} (1 + x)^{n-1} \right)$
= $(1 + x) \left(\sum_{j=0}^{4^r - 2^r - 1} x^j + \sum_{n=1}^{2^r - 1} x^{(2^r - 1)n} (1 + x)^{n-1} \right).$

・ロト ・回ト ・ヨト ・ヨト

э

UTTyler

Ultimately, $(\beta_1(f_{r,1}), \beta_0(f_{r,1})) = (4^r - 3^r, 3^r - 1).$

Katie Anders

Corollary

The reciprocal polynomials $f_{(R),r,1} = (1 + x)(1 + x + x^{2^r})$ are also robust with order dividing $4^r - 1$.

UTTyler

Corollary

The reciprocal polynomials $f_{(R),r,1} = (1 + x)(1 + x + x^{2^r})$ are also robust with order dividing $4^r - 1$.

(日) (同) (日) (日)

UTTyler

Example

Consider $f_{(R),3,1}(x) = 1 + x^2 + x^8 + x^9$.

• order
$$f_{(R),3,1} = 4^3 - 1 = 63$$

•
$$\beta(f_{(R),3,1}) = (37,26)$$

Katie Anders

Theorem

Fix $r \geq 3$.

(i) The order of $f_{r,2}(x) := (1+x)(1+x^{2^r}+x^{2^r+1})$ divides $4^r + 2^r + 1$.

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

(ii)
$$\beta_1(f_{r,2}) = 4^r - 3^r + 2^r$$

(iii) $\beta(f_{r,2}) = (4^r - 3^r + 2^r, 3^r + 1)$ and $f_{r,2}(x)$ is robust.

Consider $f_{3,2}(x) = 1 + x + x^8 + x^{10}$.

UTTyler

Katie Anders

Consider
$$f_{3,2}(x) = 1 + x + x^8 + x^{10}$$
.
• order $(f_{3,2}(x)) = 4^3 + 2^3 + 1 = 73$

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

・ロト ・回ト ・ヨト ・ヨト

≣ •∕) ९.(UTTyler

Consider
$$f_{3,2}(x) = 1 + x + x^8 + x^{10}$$
.
• order $(f_{3,2}(x)) = 4^3 + 2^3 + 1 = 73$
• $\beta_1(f_{3,2}) = 4^3 - 3^3 + 2^3 = 45$

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

・ロト ・回ト ・ヨト ・ヨト

≣ •⁄) ९.(UTTyler

Consider
$$f_{3,2}(x) = 1 + x + x^8 + x^{10}$$
.
• order $(f_{3,2}(x)) = 4^3 + 2^3 + 1 = 73$
• $\beta_1(f_{3,2}) = 4^3 - 3^3 + 2^3 = 45$
• $\beta(f_{3,2}) = (45, 28)$

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

・ロト ・回ト ・ヨト ・ヨト

≣ •⁄) ९.(UTTyler

Consider
$$f_{3,2}(x) = 1 + x + x^8 + x^{10}$$
.
• order $(f_{3,2}(x)) = 4^3 + 2^3 + 1 = 73$
• $\beta_1(f_{3,2}) = 4^3 - 3^3 + 2^3 = 45$
• $\beta(f_{3,2}) = (45, 28)$

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

・ロト ・回ト ・ヨト ・ヨト

≣ •⁄) ९.(UTTyler

Corollary

The reciprocal polynomials $f_{(R),r,2}(x) = (1+x)(1+x+x^{2^r+1})$ are also robust with order dividing $4^r + 2^r + 1$.

<ロ> (四) (四) (三) (三)

UTTyler

Corollary

The reciprocal polynomials $f_{(R),r,2}(x) = (1+x)(1+x+x^{2^r+1})$ are also robust with order dividing $4^r + 2^r + 1$.

イロト イ団ト イヨト イヨト

UTTyler

Example

Consider
$$f_{(R),3,2}(x) = 1 + x^2 + x^9 + x^{10}$$
.

• order
$$f_{(R),3,2} = 73$$

•
$$\beta(f_{(R),3,2}) = (45,28)$$

Katie Anders

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

UTTyler

æ

< ≣⇒

・ロン ・日子・ ・ ヨン

Future Research Ideas

- Finding more families of robust polynomials
- Determining the cluster points of

$$\left\{\frac{\beta_1(f)}{\beta_0(f) + \beta_1(f)} : f(x) \text{ is a polynomial}\right\}$$

<ロ> <同> <同> < 回> < 回>

UTTyler

• Exploring properties of $f_A(n)$ in bases other than 2

Acknowledgements

- The presenter acknowledges support from National Science Foundation grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students".
- The presenter also wishes to thank Professor Bruce Reznick for his time, ideas, and encouragement.

< < >> < </p>

UTTyler

Recall $f_{\mathcal{A}}(n)$ is the number of ways to write

$$n = \sum_{i=0}^{\infty} \epsilon_i 2^i, \text{ where } \epsilon_i \in \mathcal{A} := \{0 = a_0 < a_1 < \cdots < a_z\}.$$

Expanding the sum, we see that

$$n = \epsilon_0 + \epsilon_1 2 + \epsilon_2 2^2 + \cdots$$
$$= \epsilon_0 + 2(\epsilon_1 + \epsilon_2 2 + \cdots)$$

・ロト ・回ト ・ヨト ・ヨト

æ

UTTyler

Katie Anders

Recall $f_{\mathcal{A}}(n)$ is the number of ways to write

$$n = \sum_{i=0}^{\infty} \epsilon_i 2^i, \text{ where } \epsilon_i \in \mathcal{A} := \{0 = a_0 < a_1 < \cdots < a_z\}.$$

Expanding the sum, we see that

$$n = \epsilon_0 + \epsilon_1 2 + \epsilon_2 2^2 + \cdots$$
$$= \epsilon_0 + 2(\epsilon_1 + \epsilon_2 2 + \cdots)$$

We will now examine the asymptotic behavior of

$$\sum_{n=2^r}^{2^{r+1}-1} f_{\mathcal{A}}(n).$$

・ロト ・回ト ・ヨト ・ヨト

UTTyler

Katie Anders

Write $\mathcal{A} = \{0 = 2b_1, 2b_2, \dots, 2b_s, 2c_1 + 1, \dots, 2c_t + 1\}.$

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

・ロト ・回 ・ ・ ヨト ・ ヨー・ りゃぐ

Write
$$\mathcal{A} = \{0 = 2b_1, 2b_2, \dots, 2b_s, 2c_1 + 1, \dots, 2c_t + 1\}.$$

If n is even, then $\epsilon_0 = 0, 2b_2, 2b_3, \ldots$, or $2b_s$ and

$$f_{\mathcal{A}}(n) = f_{\mathcal{A}}\left(\frac{n}{2}\right) + f_{\mathcal{A}}\left(\frac{n-2b_2}{2}\right) + f_{\mathcal{A}}\left(\frac{n-2b_3}{2}\right) + \dots + f_{\mathcal{A}}\left(\frac{n-2b_s}{2}\right)$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Katie Anders

Write
$$\mathcal{A} = \{0 = 2b_1, 2b_2, \dots, 2b_s, 2c_1 + 1, \dots, 2c_t + 1\}.$$

If n is even, then $\epsilon_0=0,2b_2,2b_3,\ldots$, or $2b_s$ and

$$f_{\mathcal{A}}(n) = f_{\mathcal{A}}\left(\frac{n}{2}\right) + f_{\mathcal{A}}\left(\frac{n-2b_2}{2}\right) + f_{\mathcal{A}}\left(\frac{n-2b_3}{2}\right) + \dots + f_{\mathcal{A}}\left(\frac{n-2b_s}{2}\right)$$

Writing $n = 2\ell$, we have

$$f_{\mathcal{A}}(2\ell) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell-b_2) + f_{\mathcal{A}}(\ell-b_3) + \cdots + f_{\mathcal{A}}(\ell-b_s).$$

UTTyler

æ

・ロト ・回ト ・ヨト ・ヨト

Katie Anders

If n is odd, then $\epsilon_0 = 2c_1 + 1, 2c_2 + 1, \dots$, or $2c_t + 1$, and

$$f_{\mathcal{A}}(n) = f_{\mathcal{A}}\left(rac{n-(2c_1+1)}{2}
ight) + f_{\mathcal{A}}\left(rac{n-(2c_2+1)}{2}
ight) + \dots + f_{\mathcal{A}}\left(rac{n-(2c_t+1)}{2}
ight).$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Katie Anders

If n is odd, then $\epsilon_0 = 2c_1 + 1, 2c_2 + 1, \dots$, or $2c_t + 1$, and

$$egin{aligned} f_\mathcal{A}(n) &= f_\mathcal{A}\left(rac{n-(2c_1+1)}{2}
ight) + f_\mathcal{A}\left(rac{n-(2c_2+1)}{2}
ight) \ &+ \cdots + f_\mathcal{A}\left(rac{n-(2c_t+1)}{2}
ight). \end{aligned}$$

Writing $n = 2\ell + 1$, we have

$$f_{\mathcal{A}}(2\ell+1) = f_{\mathcal{A}}(\ell-c_1) + f_{\mathcal{A}}(\ell-c_2) + \cdots + f_{\mathcal{A}}(\ell-c_t)$$

・ロト ・回ト ・ヨト ・ヨト

æ

UTTyler

Katie Anders

Example

If
$$\mathcal{A} = \{0, 1, 4, 9\} = \{2 \cdot 0, 2 \cdot 0 + 1, 2 \cdot 2, 2 \cdot 4 + 1\}$$
, then we have

$$f_{\mathcal{A}}(2\ell) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell-2)$$

and

$$f_{\mathcal{A}}(2\ell+1)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-4).$$

・ロト ・回ト ・ヨト ・ヨト

≣ •∕) ९.(UTTyler

Katie Anders

For positive integers k, m, and a_z , let

$$\omega_{k}(m) = \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) \\ f_{\mathcal{A}}(2^{k}m-1) \\ \vdots \\ f_{\mathcal{A}}(2^{k}m-a_{z}) \end{pmatrix}$$

٠

<ロ> (日) (日) (日) (日) (日)

UTTyler

We will show that for a_z sufficiently large, there exists a fixed $(a_z + 1) \times (a_z + 1)$ matrix M such that for any $k \ge 0$,

$$\omega_{k+1} = M\omega_k.$$

Katie Anders

Example

Let $\mathcal{A} = \{0, 1, 3, 4\}.$ Then

$$f_{\mathcal{A}}(2\ell) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell-2)$$

and

$$f_{\mathcal{A}}(2\ell+1) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell-1).$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Katie Anders

$\{0,1,3,4\}$ continued

$$\omega_{k+1}(m) = \begin{pmatrix} f_{\mathcal{A}}(2^{k+1}m) \\ f_{\mathcal{A}}(2^{k+1}m-1) \\ f_{\mathcal{A}}(2^{k+1}m-2) \\ f_{\mathcal{A}}(2^{k+1}m-3) \\ f_{\mathcal{A}}(2^{k+1}m-4) \end{pmatrix} = \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) + f_{\mathcal{A}}(2^{k}m-2) \\ f_{\mathcal{A}}(2^{k}m-1) + f_{\mathcal{A}}(2^{k}m-2) \\ f_{\mathcal{A}}(2^{k}m-2) + f_{\mathcal{A}}(2^{k}m-3) \\ f_{\mathcal{A}}(2^{k}m-2) + f_{\mathcal{A}}(2^{k}m-4) \end{pmatrix}$$

.

2

UTTyler

・ロト ・回ト ・ヨト ・ヨト

Katie Anders

$\{0,1,3,4\}$ continued

$$\omega_{k+1}(m) = \begin{pmatrix} f_{\mathcal{A}}(2^{k+1}m) \\ f_{\mathcal{A}}(2^{k+1}m-1) \\ f_{\mathcal{A}}(2^{k+1}m-2) \\ f_{\mathcal{A}}(2^{k+1}m-3) \\ f_{\mathcal{A}}(2^{k+1}m-4) \end{pmatrix} = \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) + f_{\mathcal{A}}(2^{k}m-2) \\ f_{\mathcal{A}}(2^{k}m-1) + f_{\mathcal{A}}(2^{k}m-3) \\ f_{\mathcal{A}}(2^{k}m-2) + f_{\mathcal{A}}(2^{k}m-3) \\ f_{\mathcal{A}}(2^{k}m-2) + f_{\mathcal{A}}(2^{k}m-3) \\ f_{\mathcal{A}}(2^{k}m-2) + f_{\mathcal{A}}(2^{k}m-4) \end{pmatrix}$$

and $M = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$ satisfies $\omega_{k+1}(m) = M\omega_{k}(m)$.

・ロト ・回ト ・ヨト ・ヨト

.

2

UTTyler

Katie Anders

Theorem

Let \mathcal{A} , $f_{\mathcal{A}}(n)$, M, and $\omega_k(m)$ be as above, with the additional assumption that there exists some odd $a_i \in \mathcal{A}$. Define

$$s_{\mathcal{A}}(r) = \sum_{n=2^r}^{2^{r+1}-1} f_{\mathcal{A}}(n)$$

Let $|\mathcal{A}|$ denote the number of elements in the set \mathcal{A} . Then

$$\lim_{r\to\infty}\frac{s_{\mathcal{A}}(r)}{\left|\mathcal{A}\right|^{r}}=c(\mathcal{A}),$$

where $c(\mathcal{A}) \in \mathbb{Q}$, so

$$s_{\mathcal{A}}(r) \approx c(\mathcal{A}) |\mathcal{A}|^r$$

(日) (同) (三) (三)

UTTyler

Katie Anders

Example: $\mathcal{A} = \{0, 2, 3\}$

$$\begin{split} f_{\mathcal{A}}(2\ell) &= f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell-1) \\ f_{\mathcal{A}}(2\ell+1) &= f_{\mathcal{A}}(\ell-1) \\ \begin{pmatrix} f_{\mathcal{A}}(2^{k+1}m) \\ f_{\mathcal{A}}(2^{k+1}m-1) \\ f_{\mathcal{A}}(2^{k+1}m-2) \end{pmatrix} &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) \\ f_{\mathcal{A}}(2^{k}m-1) \\ f_{\mathcal{A}}(2^{k}m-2) \end{pmatrix} \end{split}$$

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

UTTyler

2

・ロト ・回ト ・ヨト ・ヨト

Example: $A = \{0, 2, 3\}$

$$\begin{aligned} f_{\mathcal{A}}(2\ell) &= f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell-1) \\ f_{\mathcal{A}}(2\ell+1) &= f_{\mathcal{A}}(\ell-1) \\ \begin{pmatrix} f_{\mathcal{A}}(2^{k+1}m) \\ f_{\mathcal{A}}(2^{k+1}m-1) \\ f_{\mathcal{A}}(2^{k+1}m-2) \end{pmatrix} &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) \\ f_{\mathcal{A}}(2^{k}m-1) \\ f_{\mathcal{A}}(2^{k}m-2) \end{pmatrix} \end{aligned}$$

The characteristic polynomial of M is $g(x) = -(x-1)(x^2 - x - 1)$.

2

・ロト ・回ト ・ヨト ・ヨト

Katie Anders

$\{0,2,3\}$ continued

$$s_{\mathcal{A}}(r) = \sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n)$$

= $\sum_{n=2^{r-1}}^{2^{r}-1} (f_{\mathcal{A}}(2n) + f_{\mathcal{A}}(2n+1))$
= $\sum_{n=2^{r-1}}^{2^{r}-1} (f_{\mathcal{A}}(n) + f_{\mathcal{A}}(n-1) + f_{\mathcal{A}}(n-1))$
= $s_{\mathcal{A}}(r-1) + 2 \sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n-1)$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Katie Anders

$$s_{\mathcal{A}}(r) = s_{\mathcal{A}}(r-1) + 2 \sum_{n=2^{r-1}}^{2^{r-1}} f_{\mathcal{A}}(n) + 2f_{\mathcal{A}}(2^{r-1}-1) - 2f_{\mathcal{A}}(2^{r}-1)$$

= $3s_{\mathcal{A}}(r-1) + 2f_{\mathcal{A}}(2^{r-1}-1) - 2f_{\mathcal{A}}(2^{r}-1)$
= $3s_{\mathcal{A}}(r-1) + 2F_{r-2} - 2F_{r-1}$
= $3s_{\mathcal{A}}(r-1) - 2F_{r-3}$

◆□> ◆□> ◆注> ◆注>

≣ •⁄) ९.୯ UTTyler

Katie Anders

Solution to homogeneous recurrence relation

$$s_{\mathcal{A}}(r) = c_1 3'$$

Solution to inhomogeneous recurrence relation

$$s_{\mathcal{A}}(r) = c_1 3^r + c_2 \phi^r + c_3 \overline{\phi}^r + c_4 (1)^r$$

<ロ> <同> <同> < 回> < 回>

æ

UTTyler

Katie Anders

$$egin{aligned} s_{\mathcal{A}}(r+2) - s_{\mathcal{A}}(r+1) - s_{\mathcal{A}}(r) &= c_1 3^r (3^2 - 3 - 1) + c_2 \phi^r (\phi^2 - \phi - 1) \ &+ c_3 ar \phi^r (ar \phi^2 - ar \phi - 1) + c_4 (1^2 - 1 - 1) \ &= c_1 3^r \cdot 5 - c_4 \end{aligned}$$

◆□> ◆□> ◆注> ◆注>

≣ •⁄) ९.୯ UTTyler

Katie Anders

$$egin{aligned} s_{\mathcal{A}}(r+2) - s_{\mathcal{A}}(r+1) - s_{\mathcal{A}}(r) &= c_1 3^r (3^2 - 3 - 1) + c_2 \phi^r (\phi^2 - \phi - 1) \ &+ c_3 ar \phi^r (ar \phi^2 - ar \phi - 1) + c_4 (1^2 - 1 - 1) \ &= c_1 3^r \cdot 5 - c_4 \end{aligned}$$

We can plug in r = 0 and r = 1 and compute sums to solve and find that $c_1 = \frac{2}{5}$. Hence

$$\lim_{r\to\infty}\frac{s_{\mathcal{A}}(r)}{|\mathcal{A}|^r}=\lim_{r\to\infty}\frac{s_{\{0,2,3\}}(r)}{4^r}=\frac{2}{5}.$$

< ロ > < 回 > < 回 > < 回 > < 回 >

UTTyler

Katie Anders

Proof

Let $g(\lambda) := \det(M - \lambda I)$ be the characteristic polynomial of M with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_y$, where each λ_i has multiplicity e_i , so

$$g(\lambda) = \sum_{k=0}^{a_z+1} \alpha_k \lambda^k.$$

By Cayley-Hamilton, we know that g(M) = 0. Thus we have

$$0 = g(M) = \sum_{k=0}^{a_z+1} \alpha_k M^k$$

and hence, for all r,

$$0 = \left(\sum_{k=0}^{a_{x}+1} \alpha_{k} M^{k}\right) \omega_{r}(m) = \sum_{k=0}^{a_{x}+1} \alpha_{k} \omega_{r+k}(m).$$

<ロ> (日) (日) (日) (日) (日)

UTTyler

Katie Anders

Let
$$I_r = \{2^r, 2^r + 1, 2^r + 2, \dots, 2^{r+1} - 1\}$$
. Then $I_r = 2I_{r-1} \cup (2I_{r-1} + 1)$. Thus

$$\begin{split} s_{\mathcal{A}}(r) &= \sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n) \\ &= \sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(2n) + f_{\mathcal{A}}(2n+1) \\ &= \sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n) + f_{\mathcal{A}}(n-b_{2}) + \dots + f_{\mathcal{A}}(n-b_{s}) \\ &+ f_{\mathcal{A}}(n-c_{1}) + \dots + f_{\mathcal{A}}(n-c_{t}). \end{split}$$

◆□> ◆□> ◆注> ◆注>

≣ •⁄) ९.୯ UTTyler

Katie Anders

Now

$$\sum_{n=2^{r-1}}^{2^r-1} f_{\mathcal{A}}(n-k) = \sum_{n=2^{r-1}}^{2^r-1} f_{\mathcal{A}}(n) + \sum_{j=1}^k \left(f_{\mathcal{A}}(2^{r-1}-j) - f(2^r-j) \right),$$

SO

$$s_{\mathcal{A}}(r) = |\mathcal{A}| \sum_{n=2^{r-1}}^{2^r-1} f_{\mathcal{A}}(n) + h(r) = |\mathcal{A}| s_{\mathcal{A}}(r-1) + h(r),$$

where h_r is such that

$$\sum_{k=0}^{a_z+1} \alpha_k h(r+k) = 0.$$

・ロト ・回ト ・ヨト ・ヨト

2

UTTyler

Katie Anders

The solution to this inhomogeneous recurrence relation is of the form

$$s_{\mathcal{A}}(r) = c_1 |\mathcal{A}|^r + \sum_{i=1}^{y} p_i(\lambda_i),$$

・ロト ・回ト ・ヨト ・ヨト

æ

UTTyler

where $p_i(\lambda_i) = \sum_{j=1}^{e_i} c_{ij} r^{j-1} \lambda_i^r$.

Katie Anders

We can compute $\sum_{k=0}^{a_z+1} \alpha_k s_A(r+k)$, and for sufficiently large r, we have

$$\sum_{k=0}^{a_{z}+1} \alpha_{k} s_{\mathcal{A}}(r+k) = c_{1} \sum_{k=0}^{a_{z}+1} \alpha_{k} \left| \mathcal{A} \right|^{r+k} + 0 = c_{1} \left| \mathcal{A} \right|^{r} g\left(\left| \mathcal{A} \right| \right).$$

Then we can solve for c_1 to see that

$$c_1 = \frac{\sum_{k=0}^{a_z+1} \alpha_k s_{\mathcal{A}}(r+k)}{|\mathcal{A}|^r g(|\mathcal{A}|)}.$$

・ロト ・回ト ・ヨト ・ヨト

UTTyler

Katie Anders

\mathcal{A}	$c(\mathcal{A})$	$N(c(\mathcal{A}))$	$ \mathcal{A} $	$c(\mathcal{A})$	$N(c(\mathcal{A}))$
$\{0,1,2\}$	1	1.000	$\{0, 1, 3\}$	$\frac{4}{5}$	0.800
$\{0,1,4\}$	<u>5</u> 8	0.625	$\{0, 1, 5\}$	$\frac{14}{25}$	0.560
$\{0,1,6\}$	<u>425</u> 852	0.499	$\{0, 1, 7\}$	<u>176</u> 391	0.450
$\{0,1,8\}$	<u>137</u> 338	0.405	$\{0, 1, 9\}$	$\frac{1448}{3775}$	0.384
$\{0, 1, 10\}$	<u>1990</u> 5527	0.360	$\{0, 1, 11\}$	<u>3223</u> 9476	0.340
$\{0, 1, 12\}$	<u>2020</u> 6283	0.322	$\{0, 1, 13\}$	47228 154123	0.306
$\{0, 1, 14\}$	<u>35624</u> 122411	0.291	$\{0, 1, 15\}$	<u>699224</u> 2501653	0.280

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

₹.,

◆□> ◆□> ◆注> ◆注>

\mathcal{A}	$c(\mathcal{A})$	$ $ $\tilde{\mathcal{A}}$	$c(ilde{\mathcal{A}})$
$\{0, 1, 2, 4\}$	$\frac{7}{11}$	$\{0, 2, 3, 4\}$	$\frac{3}{11}$
$\{0,2,3,6\}$	<u>2531</u> 9536	$\{0, 3, 4, 6\}$	<u>1344</u> 9536
$\{0, 1, 6, 9\}$	<u>3401207</u> 16513920	$\{0, 3, 8, 9\}$	$\frac{1156032}{16513920}$
$\{0, 1, 7, 9\}$	<u>132416</u> 655040	$\{0, 2, 8, 9\}$	<u>51145</u> 655040
$\{0,4,5,6,9\}$	<u>4044</u> 83753	$\{0, 3, 4, 5, 9\}$	<u>6716</u> 83753

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

UTTyler

€.....

◆□> ◆□> ◆注> ◆注>

Theorem Let A, $f_A(n)$ and $M = [m_{\alpha,\beta}]$ be as above. Define

$$\tilde{\mathcal{A}}:=\{0,a_z-a_{z-1},\ldots,a_z-a_1,a_z\}.$$

・ロト ・四ト ・ヨト ・ヨト

2

UTTyler

Theorem Let A, $f_A(n)$ and $M = [m_{\alpha,\beta}]$ be as above. Define

$$\widetilde{\mathcal{A}} := \{\mathbf{0}, \mathbf{a}_z - \mathbf{a}_{z-1}, \dots, \mathbf{a}_z - \mathbf{a}_1, \mathbf{a}_z\}.$$

Let $\mathsf{N} = [\mathsf{n}_{lpha,eta}]$ be the $(\mathsf{a}_z+1) imes(\mathsf{a}_z+1)$ matrix such that

$$\begin{pmatrix} f_{\tilde{\mathcal{A}}}(2n) \\ f_{\tilde{\mathcal{A}}}(2n-1) \\ \vdots \\ f_{\tilde{\mathcal{A}}}(2n-a_z) \end{pmatrix} = N \begin{pmatrix} f_{\tilde{\mathcal{A}}}(n) \\ f_{\tilde{\mathcal{A}}}(n-1) \\ \vdots \\ f_{\tilde{\mathcal{A}}}(n-a_z) \end{pmatrix}$$

٠

・ロト ・回ト ・ヨト ・ヨト

æ

UTTyler

Katie Anders

Theorem Let A, $f_A(n)$ and $M = [m_{\alpha,\beta}]$ be as above. Define

$$\widetilde{\mathcal{A}} := \{\mathbf{0}, \mathbf{a}_z - \mathbf{a}_{z-1}, \dots, \mathbf{a}_z - \mathbf{a}_1, \mathbf{a}_z\}.$$

Let $\mathsf{N} = [\mathsf{n}_{lpha,eta}]$ be the $(\mathsf{a}_z+1) imes(\mathsf{a}_z+1)$ matrix such that

$$\begin{pmatrix} f_{\tilde{\mathcal{A}}}(2n) \\ f_{\tilde{\mathcal{A}}}(2n-1) \\ \vdots \\ f_{\tilde{\mathcal{A}}}(2n-a_z) \end{pmatrix} = N \begin{pmatrix} f_{\tilde{\mathcal{A}}}(n) \\ f_{\tilde{\mathcal{A}}}(n-1) \\ \vdots \\ f_{\tilde{\mathcal{A}}}(n-a_z) \end{pmatrix}$$

Then
$$m_{\alpha,\beta} = n_{a_z-\alpha,a_z-\beta}$$
.

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series

æ

•

・ロト ・回ト ・ヨト ・ヨト

Proof

Recall we can write

$$\mathcal{A} := \{0, 2b_1, \ldots, 2b_s, 2c_1 + 1, \ldots, 2c_t + 1\},\$$

so that

$$f_{\mathcal{A}}(2n-2j) = f_{\mathcal{A}}(n-j) + f_{\mathcal{A}}(n-j-b_1) + \cdots + f_{\mathcal{A}}(n-j-b_s)$$

and

$$f_{\mathcal{A}}(2n-2j-1) = f_{\mathcal{A}}(n-j-c_1-1) + \cdots + f_{\mathcal{A}}(n-j-c_t-1)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

UTTyler

for j sufficiently large.

Katie Anders

Then
$$m_{\alpha,\beta} = 1$$

 $\iff f_{\mathcal{A}}(n-\beta)$ is a summand in the recursive sum
that expresses $f_{\mathcal{A}}(2n-\alpha)$
 $\iff 2n-\alpha = 2(n-\beta) + K$, where $K \in \mathcal{A}$
 $\iff 2\beta - \alpha \in \mathcal{A}$.

◆□> ◆□> ◆注> ◆注>

≣ •⁄) ९.୯ UTTyler

Katie Anders

Now
$$n_{a_z-\alpha,a_z-\beta} = 1$$

 $\iff f_{\tilde{\mathcal{A}}}(n - (a_z - \beta))$ is a summand in the recursive sum
that expresses $f_{\tilde{\mathcal{A}}}(2n - (a_z - \alpha))$
 $\iff 2n - (a_z - \alpha) = 2(n - (a_z - \beta)) + \tilde{K}$, where $\tilde{K} \in \tilde{\mathcal{A}}$
 $\iff a_z + \alpha - 2\beta = \tilde{K}$
 $\iff 2\beta - \alpha \in \mathcal{A}$.

◆□> ◆□> ◆注> ◆注>

≣ •⁄) ९.୯ UTTyler

Katie Anders

Thus $M = A^{-1}NA$, where

$$A = \left(\begin{array}{cccccc} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{array} \right),$$

so M and N have the same characteristic polynomial. Hence the denominator of c(A) is the same as the denominator of $c(\tilde{A})$.

<ロ> <四> <四> <日> <日> <日</p>

UTTyler

Future Research Ideas

- Finding more families of robust polynomials
- Determining the cluster points of

$$\left\{\frac{\beta_1(f)}{\beta_0(f)+\beta_1(f)}:f(x) \text{ is a polynomial}\right\}$$

(日) (同) (三) (三)

UTTyler

- Finding formulas for c(A)
- Exploring properties of $f_A(n)$ in bases other than 2

Let f(x) be an element of $\mathbb{F}_2[x]$ with deg(f(x)) = k. Then Lidl & Niederreiter's *Finite Fields* gives an upper bound of

$$|\beta_1(f(x)) - \beta_0(f(x))| \le 2^{k/2}.$$

UTTyler

Let f(x) be an element of $\mathbb{F}_2[x]$ with deg(f(x)) = k. Then Lidl & Niederreiter's *Finite Fields* gives an upper bound of

$$|\beta_1(f(x)) - \beta_0(f(x))| \le 2^{k/2}.$$

Thus

and

$$|\beta_1(f_{3,1}(x)) - \beta_0(f_{3,1}(x))| = 37 - 26 = 11 \le 2^{9/2} \approx 22.6$$

$$|eta_1(f_{3,2}(x)) - eta_0(f_{3,2}(x))| = 45 - 28 = 17 \le 2^{10/2} = 32.$$

UTTyler

Katie Anders

In general,

$$\begin{aligned} |\beta_1(f_{r,1}(x)) - \beta_0(f_{r,1}(x))| &= 4^r - 3^r - (3^r - 1) \\ &= 4^r - 2 \cdot 3^r + 1 \\ &\ll 2^{\frac{1}{2}(2^r + 1)} \\ &= 4^{2^{r-2} + \frac{1}{4}} \end{aligned}$$

and

$$\begin{aligned} |\beta_1(f_{r,2}(x)) - \beta_0(f_{r,2}(x))| &= 4^r - 3^r + 2^r - (3^r + 1) \\ &= 4^r - 2 \cdot 3^r + 2^r - 1 \\ &\ll 2^{\frac{1}{2}(2^r + 2)} \\ &= 4^{2^{r-2} + \frac{1}{2}}. \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

≣ •∕) ९.(UTTyler

Katie Anders

Example:
$$\mathcal{A} = \{0, 1, 4\}$$

 $f_{\mathcal{A}}(2\ell) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell - 2)$
 $f_{\mathcal{A}}(2\ell + 1) = f_{\mathcal{A}}(\ell)$
 $\begin{pmatrix} f_{\mathcal{A}}(2^{k+1}m) \\ f_{\mathcal{A}}(2^{k+1}m - 1) \\ f_{\mathcal{A}}(2^{k+1}m - 2) \\ f_{\mathcal{A}}(2^{k+1}m - 3) \\ f_{\mathcal{A}}(2^{k+1}m - 4) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) \\ f_{\mathcal{A}}(2^{k}m - 1) \\ f_{\mathcal{A}}(2^{k}m - 2) \\ f_{\mathcal{A}}(2^{k}m - 3) \\ f_{\mathcal{A}}(2^{k}m - 4) \end{pmatrix}$

æ

UTTyler

◆□> ◆□> ◆注> ◆注>

Katie Anders

Example:
$$\mathcal{A} = \{0, 1, 4\}$$

 $f_{\mathcal{A}}(2\ell) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell - 2)$
 $f_{\mathcal{A}}(2\ell + 1) = f_{\mathcal{A}}(\ell)$
 $\begin{pmatrix} f_{\mathcal{A}}(2^{k+1}m) \\ f_{\mathcal{A}}(2^{k+1}m - 1) \\ f_{\mathcal{A}}(2^{k+1}m - 2) \\ f_{\mathcal{A}}(2^{k+1}m - 3) \\ f_{\mathcal{A}}(2^{k+1}m - 4) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) \\ f_{\mathcal{A}}(2^{k}m - 1) \\ f_{\mathcal{A}}(2^{k}m - 2) \\ f_{\mathcal{A}}(2^{k}m - 3) \\ f_{\mathcal{A}}(2^{k}m - 4) \end{pmatrix}$

The characteristic polynomial of M is $g(x) = -(x = 1)^4 (x + 1)$.

$\{0,1,4\}$ continued

$$s_{\mathcal{A}}(r) = \sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n)$$

$$= \sum_{n=2^{r-1}}^{2^{r}-1} (f_{\mathcal{A}}(2n) + f_{\mathcal{A}}(2n+1))$$

$$= \sum_{n=2^{r-1}}^{2^{r}-1} (f_{\mathcal{A}}(n) + f_{\mathcal{A}}(n-2) + f_{\mathcal{A}}(n))$$

$$= 2s_{\mathcal{A}}(r-1) + \sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n-2)$$

$$= 3s_{\mathcal{A}}(r-1) + f_{\mathcal{A}}(2^{r-1}-2) + f_{\mathcal{A}}(2^{r-1}-1)$$

$$- f_{\mathcal{A}}(2^{r}-2) - f_{\mathcal{A}}(2^{r}-1)$$

Katie Anders

Solution to homogeneous recurrence relation

$$s_{\mathcal{A}}(r) = c_1 3^r$$

Solution to inhomogeneous recurrence relation

$$s_{\mathcal{A}}(r) = c_1 3^r + c_2 (-1)^r + c_3 (1)^r + c_4 r (1)^r + c_5 r^2 (1)^r + c_6 r^3 (1)^r$$

Hence
$$\lim_{r \to \infty} \frac{s_{\mathcal{A}}(r)}{|\mathcal{A}|^r} = c_1.$$

<ロ> <四> <四> <日> <日> <日</p>

UTTyler

Katie Anders