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Introduction

Recall that every number has a unique binary representation and
can be written as 3% ¢;2/, where ¢; € {0,1}.
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Introduction

Recall that every number has a unique binary representation and
can be written as 3% ¢;2/, where ¢; € {0,1}.

Question: What happens if we take the coefficients from a
different set?
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The Stern Sequence

Example: If we take coefficients from the set {0, 1,2}, then the
binary representation is no longer unique. For example, there are
three ways to write n =4 as > ¢;2', ¢; € {0,1,2}:

4=2-14+1-2=0-14+0-2+1-2°=0-1+42-2.
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The Stern Sequence

Example: If we take coefficients from the set {0, 1,2}, then the
binary representation is no longer unique. For example, there are
three ways to write n =4 as > ¢;2', ¢; € {0,1,2}:

4=2-14+1-2=0-14+0-2+1-2°=0-1+42-2.

Taking coefficients from this set, the number of representations of
n — 1 corresponds to the nth term in the Stern sequence, which is
defined by s(2n) = s(n) and s(2n+ 1) = s(n) + s(n+ 1), with
s(0) =0and s(1) = 1.
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Generalizing the Ideas

Let A={0=ag<a; << aj} denote a finite subset of N
containing 0. Let f4(n) denote the number of ways to write n in
the form

00
n:Zeka, ex € A.
k=0
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Generalizing the Ideas

Let A={0=ag<a; << aj} denote a finite subset of N
containing 0. Let f4(n) denote the number of ways to write n in
the form

00
n:ZGka, ex € A.
k=0

We associate to A its characteristic function x 4(n) and the
generating function

00
o) = S A = S A
n=0 acA
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Product Representation

Denote the generating function of f4(n) by

Fa(x) = Z fa(n)x".
n=0
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Product Representation

Denote the generating function of f4(n) by

Fa(x) = Z fa(n)x".
n=0

Viewing the number of ways to write n as a partition problem, we
obtain the following product representation for F4(x).

Fa)=1] (1 +xn? g +Xaj2k) =[] 64
k=0

k=0
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In Congruence Properties of Binary Partition Functions, Anders,
Dennsion, Lansing, and Reznick studied the behavior of
(f4(n)) mod 2. Theorem 1.1 states that

PA(X)Fa(x) =1 in Fa[x].
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In Congruence Properties of Binary Partition Functions, Anders,
Dennsion, Lansing, and Reznick studied the behavior of
(f4(n)) mod 2. Theorem 1.1 states that

PA(X)Fa(x) =1 in Fa[x].

We can make similar definitions for an infinite set A containing 0,
and the above result still applies. This relates our work to work by
Cooper, Eichhorn, and O'Bryant.
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Return to the Stern Sequence

froa,2y(n)  s(n) n foi2y(n) s(n)
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Stern noticed in 1858 that the parity of s(n) is periodic with
period 3, and Reznick proved in 1989 that s(n) = frg 1 2y(n — 1).
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Example

Note that ¢ 103(x) =1+ x + x?, and applying the theorem, we
see that in Fp[[x]],

1

1+ x4+ x2
1+ x

1+x3
=1 +x) 1+ +x0+-0)
=14+ x+x3 x4+ x4+ x4+

Fio1,2y(x) =
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Another Example

Dennison observed in her thesis that if A ={0,1,3},f4(n) is
periodic with period 7 and each period has four odd terms.
Specifically, f4(n) is odd when n=10,1,2,4 (mod 7).
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Another Example

Dennison observed in her thesis that if A ={0,1,3},f4(n) is
periodic with period 7 and each period has four odd terms.
Specifically, f4(n) is odd when n=10,1,2,4 (mod 7).

Using our main theorem, we find that in F[[x]],

_ 1 _1+X+X2+x4
14 x+x3 1+ x7

Fio,1,33(x)
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Similarly, Dennison noted that if A = {0,2, 3}, f4(n) is periodic
with period 7 and each period has four odd terms, which occur
when n =0,2,3,4 (mod 7).
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Similarly, Dennison noted that if A = {0,2, 3}, f4(n) is periodic
with period 7 and each period has four odd terms, which occur
when n =0,2,3,4 (mod 7).

Again, it follows from our main theorem that

B 1 _1—|—x2—i—x3—|—x4
Sl x2 X3 1+ x7 '

Fio,2,33(x)
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Definitions and Observations

» Since A is finite, ¢.4(x) is a polynomial in Fa[x].
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Definitions and Observations
» Since A is finite, ¢.4(x) is a polynomial in Fa[x].

» For any polynomial p(x) € Fz[x], let

¢(p) = length(p) = number of terms in p.
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Definitions and Observations

» Since A is finite, ¢.4(x) is a polynomial in Fa[x].
» For any polynomial p(x) € Fz[x], let

¢(p) = length(p) = number of terms in p.

» Let D = D(p(x)) denote the order of p(x), the smallest
integer D such that p(x) | 1+ xP. Whenever p(0) = 1, such
a D exists.
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Definitions and Observations

v

Since A is finite, ¢ 4(x) is a polynomial in Fa[x].

v

For any polynomial p(x) € Fa[x], let

¢(p) = length(p) = number of terms in p.

v

Let D = D(p(x)) denote the order of p(x), the smallest
integer D such that p(x) | 1+ xP. Whenever p(0) = 1, such
a D exists.

Define p*(x) by p(x)p*(x) = 1+ xP.

v
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An Example from Our Paper

Let A ={0,1,4,9}. In Fo[x],

pa=1+x+x*+x° =1 +x)*"1+x+x3)(1+x*+x3).
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An Example from Our Paper

Let A ={0,1,4,9}. In Fo[x],
pa=1+x+x*+x° =1 +x)*"1+x+x3)(1+x*+x3).

Quick computations show that the period of ¢ 4 is 84. Recall that
this means ¢p4¢% =1+ x® . Further computations show that oy
has 41 terms with exponents in the set {0,1,2,3,...,70,75}.
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An Example from Our Paper

Let A ={0,1,4,9}. In Fo[x],
pa=1+x+x*+x° =1 +x)*"1+x+x3)(1+x*+x3).

Quick computations show that the period of ¢ 4 is 84. Recall that
this means ¢p4¢% =1+ x® . Further computations show that oy
has 41 terms with exponents in the set {0,1,2,3,...,70,75}.

As we will see, this means that (g .1.4,01(n) mod 2) is periodic with
period 84 and has 41 odd terms and 43 even terms in each period.
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We have
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We have
_ 1 eux)
palx)  1+xP

If o5 (x) = > 11 xb where 0 = by < --- < by = D — max A, then

FA(x) in Fa[x]. (1)

fa(n)=1mod 2 <= n=b;mod D for some i.
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We have
_ 1 oux)
©palx)  14+xP

If o5 (x) = > 11 xb where 0 = by < --- < by = D — max A, then

FA(x) in Fa[x]. (1)

fa(n)=1mod 2 <= n=b;mod D for some i.

In any block of D consecutive integers,

#{n: fa(n) is odd} = £(¢%) = B1(P.a)
#{n: fa(n) is even} = D — £(¢74) = Bo(d4).
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In Reciprocals of Binary Power Series, which appeared in
International Journal of Number Theory in 2006, Cooper,
Eichhorn, and O'Bryant considered the fraction ¢(¢%)/D, as we
did in our paper. Here | instead consider the ordered pair

B(oa) := (B1(d4), Bo(P.4)) s

which gives more detailed information than reduced fractions.

The first coordinate represents the number of times f4(n) is odd in
a minimal period, and the second coordinate represents the
number of times f4(n) is even in a minimal period.
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Robust polynomials

Cooper, Eichhorn, and O'Bryant showed by direct computation
that S1(f) < So(f) + 1 when deg(f) < 8.
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Robust polynomials

Cooper, Eichhorn, and O'Bryant showed by direct computation
that S1(f) < So(f) + 1 when deg(f) < 8.

We call a polynomial f(x) robust if 51(f) > So(f) + 1. This is
equivalent to saying that $1(f) > (D + 1)/2, where D is the order
of f(x).
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They also posed the problem of describing the set

p1(f) _ _ .
{ﬂo(f)Jrﬁl(f) fx)is a POlyn0m|a|}_
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They also posed the problem of describing the set

{ﬂo(ffl-i(-’%(ﬁ :f(x)isa ponnomiaI}.
Since f(x) = 1+ xP has order D and S1(f) = £ (f*(x)) = 1, we
see the greatest lower bound of the set is 0. | will exhibit four
sequences {f,} of polynomials such that 31 (f;) — Bo(fp) — o0,
and, moreover,

51 (fn)

e BolF) + Bu(h) -
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For n with standard binary representation
n=2bc 4 2b-1 4 ...y obt 4 obo

define
Pa(x) = xPe o xPe1 oy b o
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For n with standard binary representation
n=2bc 4 2b-1 4 ...y obt 4 obo

define
Pa(x) = xPe o xPe1 oy b o

For example, 11 = 23 421 + 29 50 Pyy(x) = x3 + x + 1.
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For n with standard binary representation
n=2bk L ob-1 ... oh _|_2bo,
define
Pa(x) = xPe o xPe1 oy b o

For example, 11 = 23 + 21 4+ 20, 50 P3(x) = x3 + x + 1. For odd

n, consider the fraction
t(Pp)

ord(Pp)’
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Reciprocal Polynomials

Definition
For a polynomial f(x) of degree n, the reciprocal polynomial of
f(x) is firy(x) :== x"f(1/x).

Katie Anders

Odd behavior in the coefficients of reciprocals of binary power series



Reciprocal Polynomials

Definition

For a polynomial f(x) of degree n, the reciprocal polynomial of
f(x) is firy(x) :== x"f(1/x).

If order(f(x)) = D, then order (figy(x)) = D. Thus

B(f(x)) = B (f(r)(x)). and the robustness of f(x) is equivalent to
the robustness of f(g)(x).
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Reciprocal Polynomials

Definition
For a polynomial f(x) of degree n, the reciprocal polynomial of
f(x) is firy(x) :== x"f(1/x).

If order(f(x)) = D, then order (figy(x)) = D. Thus
B(f(x)) = B (f(r)(x)). and the robustness of f(x) is equivalent to
the robustness of f(g)(x).

With A= {0=ap < a1 < --- < a;}, define

/I: {O,aj—aj,l,--- ,aj—al,aj}.
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First Theorem

Theorem
Fix r > 3.

(i) The order of f,1(x) := (1 +x)(1 +x* 1 +x2?") divides 4" — 1.
(i) B1(fr1) =4"—3"
(iii) Hence B (f,1) = (4" —3",3" — 1) and f, 1(x) is robust.
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Example

Consider f31(x) = 1+ x + x" + x°.
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Example

Consider f31(x) = 1+ x + x" + x°.
» order(f1(x)) =43 — 1 =163
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Example

Consider f31(x) = 1+ x + x" + x°.
» order(f1(x)) =43 — 1 =163
> fi(fha) =4 -3 =37
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Example

Consider f31(x) = 1+ x + x" + x°.
» order(f1(x)) =43 — 1 =163
> fi(fha) =4 -3 =37
> B(f31) = (37,26)
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Example

Consider f31(x) = 1+ x + x" + x°.
» order(f1(x)) =43 — 1 =163
> fi(fha) =4 -3 =37
> B(f31) = (37,26)
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Proof

Define
r—1 ) )
g1(x) =11 (1 +xZD2 XM) + XV
j=0
By a lemma,

(1 + X2r_1 + X2r) gr,l(X) =1+ X4r_1.
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Because

r—1
ga)=JJQ+1+1)+1=0 (mod ?2),
Jj=0

we know (1 + x) | gr1(x).
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Because
r—1
ga)=JJQ+1+1)+1=0 (mod ?2),
j=0

we know (1 + x) | gr1(x).
Write (1 + x)h, 1(x) = gr1(x), so

(T+x 1+ x%) (L+x)ha(x) =1+ x*1
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Because

r—1
ga)=JJQ+1+1)+1=0 (mod ?2),
Jj=0

we know (1 + x) | gr1(x).
Write (1 + x)h, 1(x) = gr1(x), so

(T+x 1+ x%) (L+x)ha(x) =1+ x*1

Thus fr1(x) | (1+x*~1) and

foih1 =1+x*"1
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Rewrite
r—1 ) )
j=0
to obtain
r—1 ) )
gri(x) = H (1 +x 021 4 x21)> + x4
j=0
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Expand the product and rewrite, using 1 + x? = (1+ X)2j' to

obtain
2r—1
gr,l(X) 4r 2r Z 2" —1)n 1+X)
1 4r—2r 21

=(1+x)< X +Z @ =Dn(1 4 x)n=
ar—2r—1 21

=(1+x) Z x + Z x=0n(1 4 x)n1
Jj=0 n=1

Ultimately, (51 (1), B0 (f,1)) = (4" —37,3" —1).
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Corollary
The reciprocal polynomials firy ,1 = (1 + x)(1 + x + x?") are also
robust with order dividing 4" — 1.
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Corollary
The reciprocal polynomials firy ,1 = (1 + x)(1 + x + x?") are also
robust with order dividing 4" — 1.

Example

Consider figy31(x) =14 x% + x5 4+ x°.
> order fig)31 = 43 -1=63
> B (fir)31) = (37,26)
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Theorem
Fix r > 3.

(i) The order of f, 5(x) := (1 + x)(1 + x* + x¥*1) divides
AT 42 +1.
(ii) pr(fr2)=4"—3"42"
(i) B(f2) = (4" — 3" +27,3" + 1) and f,2(x) is robust.
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Example

Consider f32(x) = 1 + x + x® + x10.
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Example

Consider f32(x) = 1 + x + x® + x10.
» order (f2(x)) =43 +23+1=173
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Example

Consider f32(x) = 1 + x + x® + x10.
» order (f2(x)) =43 +23+1=173
> Bi(h2) =43 -33+23 =45
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Example

Consider f32(x) = 1 + x + x® + x10.
» order (f2(x)) =43 +23+1=173
> fr(h2) =4> -3 +23 =45
> B (f32) = (45,28)
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Example

Consider f32(x) = 1 + x + x® + x10.
» order (f2(x)) =43 +23+1=173
> fr(h2) =4> -3 +23 =45
> B (f32) = (45,28)
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Corollary
The reciprocal polynomials fry ,»(x) = (L + x)(1 + x + x> 1) are
also robust with order dividing 4" + 2" + 1.
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Corollary
The reciprocal polynomials fry ,»(x) = (L + x)(1 + x + x> 1) are
also robust with order dividing 4" + 2" + 1.
Example
Consider figy32(x) = 14+ x% + x? 4 x0.
> order figy32 =73
> B (fir)32) = (45,28)
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Future Research ldeas

» Finding more families of robust polynomials

» Determining the cluster points of

{ B ()

m :f(x)is a polynomial}

» Exploring properties of f4(n) in bases other than 2
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Recall f4(n) is the number of ways to write

o

nzZe;Zi, where e; € A:={0=ap < a1 < --- < a}.
i=0

Expanding the sum, we see that

n=e+ €2+ 2% +---
=¢+2(e1+€2+--)
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Recall f4(n) is the number of ways to write

o

nzZe;Zi, where e; € A:={0=ap < a1 < --- < a}.
i=0

Expanding the sum, we see that

n=e+ €2+ 2% +---
=¢+2(e1+€2+--)

We will now examine the asymptotic behavior of

or+l_

1
> fa(n).

n=2"
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Write A = {0 = 2by,2b,, ..., 2bs,2c1 + 1,...,2¢ + 1}.
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Write A = {0 = 2by,2b,, ..., 2bs,2c1 + 1,...,2¢ + 1}.

If nis even, then ¢g = 0,2bo,2bs, ..., or 2bs and

n n—2b n—2b n—2b
fA(")ZfA(2)+fA< 5 2>+fA< 5 3>+--'+f,4< 5 S)-
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Write A = {0 = 2by,2b,, ..., 2bs,2c1 + 1,...,2¢ + 1}.

If nis even, then ¢g = 0,2bo,2bs, ..., or 2bs and

n n—2b n—2b n—2b
fA(")ZfA(2)+fA< 5 2>+fA< 5 3>+--'+f,4< 5 S)-

Writing n = 2¢, we have

fa(20) = fa(€) 4+ fa(l — bp) + fa(€ — b3) + - -+ + fa(€ — bs).
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If nis odd, then ¢¢g =2¢; +1,2cp +1,..., 0r 2¢; + 1, and

Faln) = 4 <n—(22cl +1)> L <n—(22cz+1)>

+--~+f,4<n_(2ct+1)).

2
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If nis odd, then ¢¢g =2¢; +1,2cp +1,..., 0r 2¢; + 1, and

Faln) = i <n—(22cl +1)> L <n—(22cz+1)>

+...+fA<"—<2Q+1)),

2

Writing n = 2¢ 4+ 1, we have

fA(2£+ 1) = fA(g—C1)+fA(€—C2)+"’+fA(f—Ct).
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Example

If A={0,1,4,9} ={2-0,2-0+1,2-2,2-4+ 1}, then we have

fa(20) = fa(l) + fa(f — 2)

and

fa(20 + 1) = f4(0) + f4(¢ — 8).
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For positive integers k, m, and a,, let

fA(2km)

fa(2km—1
() = A( | )
fA(2km —az)

We will show that for a, sufficiently large, there exists a fixed
(az + 1) x (az + 1) matrix M such that for any k > 0,

Wik4+1 = Muwy.
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Example

Let A=1{0,1,3,4}. Then

fa(20) = fa(l) + fa(f — 2)

and

fa(20 + 1) = f4(0) + f4(¢ - 1).
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{0,1,3,4} continued

fa(2 1 m) fa(2Km) + £4(2%m - 2)
fa(2ktm —1) fA(2" — 1)+ f4(2km —2)
wipr(m) = [ £a(2tm —=2) | = | fa(2*m —1) + f4(2"m - 3)
fa(21m — 3) fA(ka 2) + f4(2km — 3)
fa(2KFim — 4) fa(2km — 2) + f4(2km — 4)
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{0,1,3,4} continued

fa(2 1 m) fa(2Km) + £4(2%m — 2)

fA(2k ( )
wirr(m) = | Fa(2Ttm -2 fa(24m — 1) + fa(2"m - 3)
fA(ka 2) + f4(2km — 3)
fa(2km — 2) + fa(2km — 4)

and M = satisfies wi1(m) = Mwg(m).

O O O o
OO == O
O = F= OO
= O O O O
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Theorem
Let A, fa(n), M, and wx(m) be as above, with the additional
assumption that there exists some odd a; € A. Define

2r+l_1
sa(r) =Y fa(n).

n=2"

Let | A| denote the number of elements in the set A. Then

jim SAU) _ c(A),

r—00 |A|r o
where c(A) € Q, so

sa(r) = c(A)|A]".
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Example: A = {0, 2,3}

fA(2€) = fA(g) + fA(ﬁ — 1)

fa(20+1) = fu4(¢ —1)

fa(25 1 m) 110 fa(2km)
( fa2tm—-1) | =0 0 1 fa(2km —1)
fa(2ktm - 2) 011 fa(2km —2)
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Example: A = {0, 2,3}

fA(2€) = fA(g) + fA(ﬁ — 1)

fa(20+1) = fu4(¢ —1)

fa(25 1 m) 110 fa(2km)
fa2tm—-1) | =0 0 1 fa(2km —1)
fa(2ktm - 2) 011 fa(2km —2)

The characteristic polynomial of M is g(x) = —(x —1)(x®> —x —1).
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{0,2,3} continued

2r+1_1
sa(r)= > fa(n)

o

= Z (F4(2n) + f4(2n + 1))
o

= Y (fa(n)+ fa(n— 1)+ fa(n — 1))
n=2 -

=sa(r=1)+2 > fa(n—1)

n=2r-1
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2r—1
sa(r) =sa(r=1)+2 > fa(n) +2£4(27 1 = 1) = 24 (2" - 1)
n:2r—1
=3s4(r — 1)+ 2f4(271 — 1) — 2f4(2" — 1)
= 35A(r — 1) +2F_»—2F,_4
=3s4(r—1)—2F,_3
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» Solution to homogeneous recurrence relation
sa(r) = a3
» Solution to inhomogeneous recurrence relation

sa(r) = 13"+ c¢” + 30" + ca(1)"
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sa(r+2) —sa(r+1) —sa(r) = a3 (3> =3-1) + ¢ (¢* — ¢ — 1)
tad (P —o-1)+a(l®—1-1)
= C13r -5 — C4
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sa(r+2) —sa(r+1) —sa(r) = a3 (3> =3-1) + ¢ (¢* — ¢ — 1)
tad (P —o-1)+a(l®—1-1)
= C13r -5 — C4

We can plug in r =0 and r = 1 and compute sums to solve and
find that ¢; = % Hence

i SAD o s023y () 2
r—o0 ’A’r r—o0 4r 5

Katie Anders
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Proof
Let g(\) := det(M — Al) be the characteristic polynomial of M
with eigenvalues A1, Ao, ..., \,, where each \; has multiplicity e,
SO

ar+1

g(\) = Z k.
k=0

By Cayley-Hamilton, we know that g(M) = 0. Thus we have

as+1
0=g(M)=> aM
k=0

and hence, for all r,

az+1 az+1
0= (Z akMk> wr(m) = Z awrk(m).
k=0 k=0
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Let /, = {2r,2" + 1,2 +2,...,2"*1 — 1}, Then
lr =2l_1U(2l—1 +1). Thus

2r+1_1

> fa(n)

n=2"

2r—1

> fa(2n) + fa(2n +1)
n=2r-1

2r—1

= > faln)+ fa(n—by) + - + fa(n — bs)

n=2r—1

+fa(n—c)+ -+ f4(n—c).
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Now
2r—1 2r—1 k
Soofaln—k)= D faln)+ D (fa@ =)= F2 -)),
n=2r-1 n=2r-1 Jj=1
SO
2r—1
=[A > faln = Al sa(r — 1) + h(r),
n=2r—1

where h, is such that

az+1

> akh(r+k)=0.

k=0
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The solution to this inhomogeneous recurrence relation is of the
form

Yy
sa(r) = a lAI" + 3 pi(h),
i=1

where p;(\;) = Y7 ¢/ TIAL
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We can compute 32! ays4(r + k), and for sufficiently large r,
we have
az+1 az+1
S apsalr+k)=ca Y ax| A +0=c |A"g (JA]).
k=0 k=0

Then we can solve for ¢; to see that

o = Sort ousa(r + k)
A" g (A
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A c(A)  N(c(A) | A c(A4)  N(c(A)
{0,1,2} 1 1.000 {0,1,3} % 0.800
{0,1,4} 3 0.625 {0,1,5} 12 0.560
{0,1,6} 2= 0.499 {o,1,7} 3% 0.450
{o,1,8% &I 0.405 {o,1,00 188 0.384
{0,1,10} 8RN  0.360 {0,1,11} 32 0.340
{o0,1,12} 2329 0.322 {0,1,13} {LZ&  0.306
{0,1,14} 2ot 0.201 {0,1,15} 5222 0.280
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Katie Anders

A c(A) A c(A)
{0,1,2,4} {0234} &
{0,2,3,6} 231 {0,3,4,6} 34
{0,1,6,9} e {0,3,8,9} 16513650
{0,1,7.9y &2 {0,289 G
{0,4,5,6,9} 2 {0,3,4,5,9} &5
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Theorem
Let A, fa(n) and M = [m,, g] be as above. Define

A = {0732 — aZ—17 .. .7az - 31732}‘
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Theorem
Let A, fa(n) and M = [m,, g] be as above. Define

A = {0732 — aZ—17 .. .7az - 31732}‘

Let N = [n, ] be the (a; + 1) x (a, + 1) matrix such that

fA(2n — 1) _ N fA(n — 1)
fz(2n — az) fi(n—az)
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Theorem
Let A, fa(n) and M = [m,, ] be as above. Define

A = {0732 — aZ—17 .. .7az - 31732}‘

Let N = [n, ] be the (a; + 1) x (a, + 1) matrix such that

fA(2n — 1) _ N fA(n — 1)
fz(2n — az) fi(n—az)

Then my g3 = n,, o 5,—3-

Katie Anders
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Proof

Recall we can write
A:={0,2b1,...,2bs,2¢c1 + 1,...,2¢t + 1},
so that
fa(2n = 2j) = faln—j) + fa(n = j — b1) + - + fa(n — j — bs)
and
fa2n—2j—1)=fa(n—j—ca— 1)+ +fa(n—j— ¢, — 1)

for j sufficiently large.
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Then my =1
<= f4(n— B) is a summand in the recursive sum
that expresses f4(2n — «)
< 2n—a=2(n—p)+ K, where K € A
— 28—ac A
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Now n,, _qa,—p =1

<= fz(n—(a; — f)) is a summand in the recursive sum
that expresses f;(2n — (a; — ))

— 2n—(a,—a)=2(n—(a;, — B)) + K, where K € A

— a,+a-28=K

— 2B —ac A
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Thus M = A"1NA, where

00 01
00 10
A= ;
01 00
10 00

so M and N have the same characteristic polynomial. Hence the

denominator of ¢(.A) is the same as the denominator of c(A).
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Odd behavior in the coefficients of reciprocals of binary power series



Future Research ldeas

v

Finding more families of robust polynomials

» Determining the cluster points of

{ B ()
Bo(f) + Bi(f)

Finding formulas for c(.A)

:f(x)isa polynomial}

v

v

Exploring properties of f4(n) in bases other than 2
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Let f(x) be an element of F5[x] with deg(f(x)) = k. Then Lidl &
Niederreiter's Finite Fields gives an upper bound of

1B1(F(x)) — Bo(F(x))] < 2/2.

Katie Anders
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Let f(x) be an element of F5[x] with deg(f(x)) = k. Then Lidl &
Niederreiter's Finite Fields gives an upper bound of

1B1(F(x)) — Bo(F(x))| < 2¥/2.
Thus
1B1(F.1(x)) = Bo(fa(x))| =37 —26 =11 < 2°2 =226
and

1B1(B.2(x)) — Bo(fs2(x))| = 45 — 28 = 17 < 219/2 = 32,

Katie Anders
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In general,
|B1(fr1(x)) = Bo(fra(x))| = 4" =37 = (3" - 1)
=4"-2.3"+1
< 03(27+1)

— 427

and
1B1(fr2(x)) — Bo(fra(x))] = 4" —3"+2" — (3" +1)
=4 2.3 2r 1
< 2%(2%2)

=427
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Example: A = {0,1,4}
fa(20) = fa(f) + fa(f - 2)

fa(20+ 1) = f4(0)

Fa(25+m) 10100 fa(2"m)

a2 m — 1) 01000 fa(2km —1)
fatm—2) =0 10 1 0 || fa2m—2)
fa(251m - 3) 00100 []| fa2km—3)
Fa(25+m — 4) 00101 fa(2m — 4)
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Example: A = {0,1,4}
fa(20) = fa(f) + fa(f - 2)

fa(20+ 1) = f4(0)

Fa(25+m) 10100 fa(2"m)

a2 m — 1) 01000 fa(2km —1)
fatm—2) =0 10 1 0 || fa2m—2)
fa(251m - 3) 00100 []| fa2km—3)
Fa(25+m — 4) 00101 fa(2m — 4)

The characteristic polynomial of M is g

Katie Anders
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{0,1,4} continued

2rtl g
A(r) =Y fa(n)

o

= Z (f4(2n) + f4(2n + 1))
2

= Y (fa(n) + fa(n—2) + fa(n))
" 2r—1

=2s4(r—1) Z fa(n—

2r 1

=3s4(r—1)+ fA(2’*1 —2)+f4(27 1 —1)
— fa(27 —2) — f4(2" - 1)
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» Solution to homogeneous recurrence relation
sa(r) = a3
» Solution to inhomogeneous recurrence relation
sa(r) = a3 +a(—1) +c3(1) +eaar(l) +csr?(1) +cr’(1)"

» Hence

lim sa(r)

r—oo | Al -

Katie Anders
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