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Introduction

Recall that every number has a unique binary representation and
can be written as

∑∞
j=0 cj2

j , where cj ∈ {0, 1}.

Question: What happens if we take the coefficients from a
different set?
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The Stern Sequence

Example: If we take coefficients from the set {0, 1, 2}, then the
binary representation is no longer unique. For example, there are
three ways to write n = 4 as

∑
εi2

i , εi ∈ {0, 1, 2}:

4 = 2 · 1 + 1 · 2 = 0 · 1 + 0 · 2 + 1 · 22 = 0 · 1 + 2 · 2.

Taking coefficients from this set, the number of representations of
n − 1 corresponds to the nth term in the Stern sequence, which is
defined by s(2n) = s(n) and s(2n + 1) = s(n) + s(n + 1), with
s(0) = 0 and s(1) = 1.
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1 1

1 2 1

1 3 2 3 1

1 4 3 5 2 5 3 4 1
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. . . 14 11 19 8 21 13 18 5 17 12 19 7 16 9 11 2 11 9 16 7 19 12 17 5 18 13 21 8 19 11 14 . . .
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Generalizing the Ideas

Let A = {0 = a0 < a1 < · · · < aj} denote a finite subset of N
containing 0. Let fA(n) denote the number of ways to write n in
the form

n =
∞∑
k=0

εk2k , εk ∈ A.

We associate to A its characteristic function χA(n) and the
generating function

φA(x) :=
∞∑
n=0

χA(n)xn =
∑
a∈A

xa = 1 + xa1 + · · ·+ xaj .
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Product Representation

Denote the generating function of fA(n) by

FA(x) :=
∞∑
n=0

fA(n)xn.

Viewing the number of ways to write n as a partition problem, we
obtain the following product representation for FA(x).

FA(x) =
∞∏
k=0

(
1 + xa12k + · · ·+ xaj2

k
)

=
∞∏
k=0

φA(x2k )
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In Congruence Properties of Binary Partition Functions, Anders,
Dennsion, Lansing, and Reznick studied the behavior of
(fA(n)) mod 2. Theorem 1.1 states that

φA(x)FA(x) = 1 in F2[x ].

We can make similar definitions for an infinite set A containing 0,
and the above result still applies. This relates our work to work by
Cooper, Eichhorn, and O’Bryant.
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Return to the Stern Sequence

n f{0,1,2}(n) s(n) n f{0,1,2}(n) s(n)

0 1 0 9 3 4
1 1 1 10 5 3
2 2 1 11 2 5
3 1 2 12 5 2
4 3 1 13 3 5
5 2 3 14 4 3
6 3 2 15 1 4
7 1 3 16 5 1
8 4 1

Stern noticed in 1858 that the parity of s(n) is periodic with
period 3, and Reznick proved in 1989 that s(n) = f{0,1,2}(n − 1).
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Example

Note that φ{0,1,2}(x) = 1 + x + x2, and applying the theorem, we
see that in F2[[x ]],

F{0,1,2}(x) =
1

1 + x + x2

=
1 + x

1 + x3

= (1 + x)(1 + x3 + x6 + · · · )
= 1 + x + x3 + x4 + x6 + x7 + · · ·
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Another Example

Dennison observed in her thesis that if A = {0, 1, 3}, fA(n) is
periodic with period 7 and each period has four odd terms.
Specifically, fA(n) is odd when n ≡ 0, 1, 2, 4 (mod 7).

Using our main theorem, we find that in F2[[x ]],

F{0,1,3}(x) =
1

1 + x + x3
=

1 + x + x2 + x4

1 + x7
.
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Similarly, Dennison noted that if A = {0, 2, 3}, fA(n) is periodic
with period 7 and each period has four odd terms, which occur
when n ≡ 0, 2, 3, 4 (mod 7).

Again, it follows from our main theorem that

F{0,2,3}(x) =
1

1 + x2 + x3
=

1 + x2 + x3 + x4

1 + x7
.

Katie Anders UTTyler

Odd behavior in the coefficients of reciprocals of binary power series



Similarly, Dennison noted that if A = {0, 2, 3}, fA(n) is periodic
with period 7 and each period has four odd terms, which occur
when n ≡ 0, 2, 3, 4 (mod 7).

Again, it follows from our main theorem that

F{0,2,3}(x) =
1

1 + x2 + x3
=

1 + x2 + x3 + x4

1 + x7
.

Katie Anders UTTyler

Odd behavior in the coefficients of reciprocals of binary power series



Definitions and Observations

I Since A is finite, φA(x) is a polynomial in F2[x ].

I For any polynomial p(x) ∈ F2[x ], let

`(p) = length(p) = number of terms in p.

I Let D = D(p(x)) denote the order of p(x), the smallest
integer D such that p(x) | 1 + xD . Whenever p(0) = 1, such
a D exists.

I Define p∗(x) by p(x)p∗(x) = 1 + xD .
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An Example from Our Paper

Let A = {0, 1, 4, 9}. In F2[x ],

φA = 1 + x + x4 + x9 = (1 + x)4(1 + x + x2)(1 + x2 + x3).

Quick computations show that the period of φA is 84. Recall that
this means φAφ

∗
A = 1 + x84. Further computations show that φ∗A

has 41 terms with exponents in the set {0, 1, 2, 3, . . . , 70, 75}.

As we will see, this means that
(
f{0,1,4,9}(n) mod 2

)
is periodic with

period 84 and has 41 odd terms and 43 even terms in each period.
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We have

FA(x) =
1

φA(x)
=

φ∗A(x)

1 + xD
in F2[x ]. (1)

If φ∗A(x) =
∑r

i=1 x
bi , where 0 = b1 < · · · < br = D −maxA, then

fA(n) ≡ 1 mod 2⇐⇒ n ≡ bi mod D for some i .

In any block of D consecutive integers,

#{n : fA(n) is odd} = `(φ∗A) = β1(φA)

#{n : fA(n) is even} = D − `(φ∗A) = β0(φA).
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In Reciprocals of Binary Power Series, which appeared in
International Journal of Number Theory in 2006, Cooper,
Eichhorn, and O’Bryant considered the fraction `(φ∗A)/D, as we
did in our paper. Here I instead consider the ordered pair

β(φA) := (β1(φA), β0(φA)) ,

which gives more detailed information than reduced fractions.

The first coordinate represents the number of times fA(n) is odd in
a minimal period, and the second coordinate represents the
number of times fA(n) is even in a minimal period.
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Robust polynomials

Cooper, Eichhorn, and O’Bryant showed by direct computation
that β1(f ) ≤ β0(f ) + 1 when deg(f ) < 8.

We call a polynomial f (x) robust if β1(f ) > β0(f ) + 1. This is
equivalent to saying that β1(f ) > (D + 1)/2, where D is the order
of f (x).
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They also posed the problem of describing the set{
β1(f )

β0(f ) + β1(f )
: f (x) is a polynomial

}
.

Since f (x) = 1 + xD has order D and β1(f ) = ` (f ∗(x)) = 1, we
see the greatest lower bound of the set is 0. I will exhibit four
sequences {fn} of polynomials such that β1 (fn)− β0(fn)→∞,
and, moreover,

lim
n→∞

β1 (fn)

β0(fn) + β1(fn)
= 1.
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For n with standard binary representation

n = 2bk + 2bk−1 + · · ·+ 2b1 + 2b0 ,

define
Pn(x) = xbk + xbk−1 + · · ·+ xb1 + xb0 .

For example, 11 = 23 + 21 + 20, so P11(x) = x3 + x + 1. For odd
n, consider the fraction

` (P∗n)

ord(Pn)
.
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Reciprocal Polynomials

Definition
For a polynomial f (x) of degree n, the reciprocal polynomial of
f (x) is f(R)(x) := xnf (1/x).

If order(f (x)) = D, then order
(
f(R)(x)

)
= D. Thus

β(f (x)) = β
(
f(R)(x)

)
, and the robustness of f (x) is equivalent to

the robustness of f(R)(x).

With A = {0 = a0 < a1 < · · · < aj}, define

Ã = {0, aj − aj−1, · · · , aj − a1, aj}.

Then φA,(R)(x) = φÃ.

Katie Anders UTTyler

Odd behavior in the coefficients of reciprocals of binary power series



Reciprocal Polynomials

Definition
For a polynomial f (x) of degree n, the reciprocal polynomial of
f (x) is f(R)(x) := xnf (1/x).

If order(f (x)) = D, then order
(
f(R)(x)

)
= D. Thus

β(f (x)) = β
(
f(R)(x)

)
, and the robustness of f (x) is equivalent to

the robustness of f(R)(x).

With A = {0 = a0 < a1 < · · · < aj}, define
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First Theorem

Theorem
Fix r ≥ 3.

(i) The order of fr ,1(x) := (1 + x)(1 + x2r−1 + x2r ) divides 4r − 1.

(ii) β1 (fr ,1) = 4r − 3r

(iii) Hence β (fr ,1) = (4r − 3r , 3r − 1) and fr ,1(x) is robust.
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Example

Consider f3,1(x) = 1 + x + x7 + x9.

I order (f3,1(x)) = 43 − 1 = 63

I β1 (f3,1) = 43 − 33 = 37

I β (f3,1) = (37, 26)
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Proof

Define

gr ,1(x) =
r−1∏
j=0

(
1 + x (2r−1)2j + x2r2j

)
+ x4r−2r .

By a lemma, (
1 + x2r−1 + x2r

)
gr ,1(x) = 1 + x4r−1.
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Because

gr ,1(1) =
r−1∏
j=0

(1 + 1 + 1) + 1 ≡ 0 (mod 2),

we know (1 + x) | gr ,1(x).

Write (1 + x)hr ,1(x) = gr ,1(x), so(
1 + x2r−1 + x2r

)
(1 + x)hr ,1(x) = 1 + x4r−1.

Thus fr ,1(x) |
(
1 + x4r−1

)
and

fr ,1hr ,1 = 1 + x4r−1.
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Rewrite

gr ,1(x) =
r−1∏
j=0

(
1 + x (2r−1)2j + x2r2j

)
+ x4r−2r

to obtain

gr ,1(x) =
r−1∏
j=0

(
1 + x (2r−1)2j (1 + x2j )

)
+ x4r−2r .
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Expand the product and rewrite, using 1 + x2j = (1 + x)2j , to
obtain

gr ,1(x) = 1 + x4r−2r +
2r−1∑
n=1

x (2r−1)n(1 + x)n

= (1 + x)

(
1 + x4r−2r

1 + x
+

2r−1∑
n=1

x (2r−1)n(1 + x)n−1

)

= (1 + x)

4r−2r−1∑
j=0

x j +
2r−1∑
n=1

x (2r−1)n(1 + x)n−1

 .

Ultimately, (β1 (fr ,1) , β0 (fr ,1)) = (4r − 3r , 3r − 1).
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Corollary

The reciprocal polynomials f(R),r ,1 = (1 + x)(1 + x + x2r ) are also
robust with order dividing 4r − 1.

Example

Consider f(R),3,1(x) = 1 + x2 + x8 + x9.

I order f(R),3,1 = 43 − 1 = 63

I β
(
f(R),3,1

)
= (37, 26)
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Theorem
Fix r ≥ 3.

(i) The order of fr ,2(x) := (1 + x)(1 + x2r + x2r+1) divides
4r + 2r + 1.

(ii) β1 (fr ,2) = 4r − 3r + 2r

(iii) β (fr ,2) = (4r − 3r + 2r , 3r + 1) and fr ,2(x) is robust.
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Example

Consider f3,2(x) = 1 + x + x8 + x10.

I order (f3,2(x)) = 43 + 23 + 1 = 73

I β1 (f3,2) = 43 − 33 + 23 = 45

I β (f3,2) = (45, 28)
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Future Research Ideas

I Finding more families of robust polynomials

I Determining the cluster points of{
β1 (f )

β0(f ) + β1(f )
: f (x) is a polynomial

}

I Exploring properties of fA(n) in bases other than 2
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Recall fA(n) is the number of ways to write

n =
∞∑
i=0

εi2
i , where εi ∈ A := {0 = a0 < a1 < · · · < az}.

Expanding the sum, we see that

n = ε0 + ε12 + ε222 + · · ·
= ε0 + 2 (ε1 + ε22 + · · · )

We will now examine the asymptotic behavior of

2r+1−1∑
n=2r

fA(n).
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Write A = {0 = 2b1, 2b2, . . . , 2bs , 2c1 + 1, . . . , 2ct + 1}.

If n is even, then ε0 = 0, 2b2, 2b3, . . ., or 2bs and

fA(n) = fA

(n
2

)
+fA

(
n − 2b2

2

)
+fA

(
n − 2b3

2

)
+· · ·+fA

(
n − 2bs

2

)
.

Writing n = 2`, we have

fA(2`) = fA(`) + fA(`− b2) + fA(`− b3) + · · ·+ fA(`− bs).
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If n is odd, then ε0 = 2c1 + 1, 2c2 + 1, . . . , or 2ct + 1, and

fA(n) = fA

(
n − (2c1 + 1)

2

)
+ fA

(
n − (2c2 + 1)

2

)
+ · · ·+ fA

(
n − (2ct + 1)

2

)
.

Writing n = 2`+ 1, we have

fA(2`+ 1) = fA(`− c1) + fA(`− c2) + · · ·+ fA(`− ct).
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Example

If A = {0, 1, 4, 9} = {2 · 0, 2 · 0 + 1, 2 · 2, 2 · 4 + 1}, then we have

fA(2`) = fA(`) + fA(`− 2)

and

fA(2`+ 1) = fA(`) + fA(`− 4).
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For positive integers k ,m, and az , let

ωk(m) =


fA(2km)

fA(2km − 1)
...

fA(2km − az)

 .

We will show that for az sufficiently large, there exists a fixed
(az + 1)× (az + 1) matrix M such that for any k ≥ 0,

ωk+1 = Mωk .
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Example

Let A = {0, 1, 3, 4}. Then

fA(2`) = fA(`) + fA(`− 2)

and

fA(2`+ 1) = fA(`) + fA(`− 1).

Katie Anders UTTyler

Odd behavior in the coefficients of reciprocals of binary power series



{0, 1, 3, 4} continued

ωk+1(m) =


fA(2k+1m)

fA(2k+1m − 1)
fA(2k+1m − 2)
fA(2k+1m − 3)
fA(2k+1m − 4)

 =


fA(2km) + fA(2km − 2)

fA(2km − 1) + fA(2km − 2)
fA(2km − 1) + fA(2km − 3)
fA(2km − 2) + fA(2km − 3)
fA(2km − 2) + fA(2km − 4)

 .

and M =


1 0 1 0 0
0 1 1 0 0
0 1 0 1 0
0 0 1 1 0
0 0 1 0 1

 satisfies ωk+1(m) = Mωk(m).
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Theorem
Let A, fA(n),M, and ωk(m) be as above, with the additional
assumption that there exists some odd ai ∈ A. Define

sA(r) =
2r+1−1∑
n=2r

fA(n).

Let |A| denote the number of elements in the set A. Then

lim
r→∞

sA(r)

|A|r
= c(A),

where c(A) ∈ Q, so

sA(r) ≈ c(A) |A|r .
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Example: A = {0, 2, 3}

fA(2`) = fA(`) + fA(`− 1)

fA(2`+ 1) = fA(`− 1) fA(2k+1m)
fA(2k+1m − 1)
fA(2k+1m − 2)

 =

 1 1 0
0 0 1
0 1 1

 fA(2km)
fA(2km − 1)
fA(2km − 2)



The characteristic polynomial of M is g(x) = −(x − 1)(x2− x − 1).
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{0, 2, 3} continued

sA(r) =
2r+1−1∑
n=2r

fA(n)

=
2r−1∑

n=2r−1

(fA(2n) + fA(2n + 1))

=
2r−1∑

n=2r−1

(fA(n) + fA(n − 1) + fA(n − 1))

= sA(r − 1) + 2
2r−1∑

n=2r−1

fA(n − 1)
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sA(r) = sA(r − 1) + 2
2r−1∑

n=2r−1

fA(n) + 2fA(2r−1 − 1)− 2fA(2r − 1)

= 3sA(r − 1) + 2fA(2r−1 − 1)− 2fA(2r − 1)

= 3sA(r − 1) + 2Fr−2 − 2Fr−1

= 3sA(r − 1)− 2Fr−3
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I Solution to homogeneous recurrence relation

sA(r) = c13r

I Solution to inhomogeneous recurrence relation

sA(r) = c13r + c2φ
r + c3φ̄

r + c4(1)r
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sA(r + 2)− sA(r + 1)− sA(r) = c13r (32 − 3− 1) + c2φ
r (φ2 − φ− 1)

+ c3φ̄
r (φ̄2 − φ̄− 1) + c4(12 − 1− 1)

= c13r · 5− c4

We can plug in r = 0 and r = 1 and compute sums to solve and
find that c1 = 2

5 . Hence

lim
r→∞

sA(r)

|A|r
= lim

r→∞

s{0,2,3}(r)

4r
=

2

5
.
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Proof
Let g(λ) := det(M − λI ) be the characteristic polynomial of M
with eigenvalues λ1, λ2, . . . , λy , where each λi has multiplicity ei ,
so

g(λ) =
az+1∑
k=0

αkλ
k .

By Cayley-Hamilton, we know that g(M) = 0. Thus we have

0 = g(M) =
az+1∑
k=0

αkM
k

and hence, for all r ,

0 =

(
az+1∑
k=0

αkM
k

)
ωr (m) =

az+1∑
k=0

αkωr+k(m).
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Let Ir = {2r , 2r + 1, 2r + 2, . . . , 2r+1 − 1}. Then
Ir = 2Ir−1 ∪ (2Ir−1 + 1). Thus

sA(r) =
2r+1−1∑
n=2r

fA(n)

=
2r−1∑

n=2r−1

fA(2n) + fA(2n + 1)

=
2r−1∑

n=2r−1

fA(n) + fA(n − b2) + · · ·+ fA(n − bs)

+ fA(n − c1) + · · ·+ fA(n − ct).
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Now

2r−1∑
n=2r−1

fA(n − k) =
2r−1∑

n=2r−1

fA(n) +
k∑

j=1

(
fA(2r−1 − j)− f (2r − j)

)
,

so

sA(r) = |A|
2r−1∑

n=2r−1

fA(n) + h(r) = |A| sA(r − 1) + h(r),

where hr is such that

az+1∑
k=0

αkh(r + k) = 0.
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The solution to this inhomogeneous recurrence relation is of the
form

sA(r) = c1 |A|r +

y∑
i=1

pi (λi ),

where pi (λi ) =
∑ei

j=1 cij r
j−1λri .
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We can compute
∑az+1

k=0 αksA(r + k), and for sufficiently large r ,
we have

az+1∑
k=0

αksA(r + k) = c1

az+1∑
k=0

αk |A|r+k + 0 = c1 |A|r g (|A|) .

Then we can solve for c1 to see that

c1 =

∑az+1
k=0 αksA(r + k)

|A|r g (|A|)
.
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A c(A) N(c(A)) A c(A) N(c(A))

{0, 1, 2} 1 1.000 {0, 1, 3} 4
5 0.800

{0, 1, 4} 5
8 0.625 {0, 1, 5} 14

25 0.560

{0, 1, 6} 425
852 0.499 {0, 1, 7} 176

391 0.450

{0, 1, 8} 137
338 0.405 {0, 1, 9} 1448

3775 0.384

{0, 1, 10} 1990
5527 0.360 {0, 1, 11} 3223

9476 0.340

{0, 1, 12} 2020
6283 0.322 {0, 1, 13} 47228

154123 0.306

{0, 1, 14} 35624
122411 0.291 {0, 1, 15} 699224

2501653 0.280

Katie Anders UTTyler

Odd behavior in the coefficients of reciprocals of binary power series



A c(A) Ã c(Ã)

{0, 1, 2, 4} 7
11 {0, 2, 3, 4} 3

11

{0, 2, 3, 6} 2531
9536 {0, 3, 4, 6} 1344

9536

{0, 1, 6, 9} 3401207
16513920 {0, 3, 8, 9} 1156032

16513920

{0, 1, 7, 9} 132416
655040 {0, 2, 8, 9} 51145

655040

{0, 4, 5, 6, 9} 4044
83753 {0, 3, 4, 5, 9} 6716

83753
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Theorem
Let A, fA(n) and M = [mα,β] be as above. Define

Ã := {0, az − az−1, . . . , az − a1, az}.

Let N = [nα,β] be the (az + 1)× (az + 1) matrix such that

fÃ(2n)

fÃ(2n − 1)

...

fÃ(2n − az)


= N



fÃ(n)

fÃ(n − 1)

...

fÃ(n − az)


.

Then mα,β = naz−α,az−β.
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Proof

Recall we can write

A := {0, 2b1, . . . , 2bs , 2c1 + 1, . . . , 2ct + 1},

so that

fA(2n − 2j) = fA(n − j) + fA(n − j − b1) + · · ·+ fA(n − j − bs)

and

fA(2n − 2j − 1) = fA(n − j − c1 − 1) + · · ·+ fA(n − j − ct − 1)

for j sufficiently large.
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Then mα,β = 1

⇐⇒ fA(n − β) is a summand in the recursive sum

that expresses fA(2n − α)

⇐⇒ 2n − α = 2(n − β) + K , where K ∈ A
⇐⇒ 2β − α ∈ A.
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Now naz−α,az−β = 1

⇐⇒ fÃ(n − (az − β)) is a summand in the recursive sum

that expresses fÃ(2n − (az − α))

⇐⇒ 2n − (az − α) = 2(n − (az − β)) + K̃ , where K̃ ∈ Ã
⇐⇒ az + α− 2β = K̃

⇐⇒ 2β − α ∈ A.
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Thus M = A−1NA, where

A =



0 0 · · · 0 1

0 0 · · · 1 0

...
...

...
...

0 1 · · · 0 0

1 0 · · · 0 0


,

so M and N have the same characteristic polynomial. Hence the
denominator of c(A) is the same as the denominator of c(Ã).
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Future Research Ideas

I Finding more families of robust polynomials

I Determining the cluster points of{
β1 (f )

β0(f ) + β1(f )
: f (x) is a polynomial

}
I Finding formulas for c(A)

I Exploring properties of fA(n) in bases other than 2
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Let f (x) be an element of F2[x ] with deg(f (x)) = k . Then Lidl &
Niederreiter’s Finite Fields gives an upper bound of

|β1(f (x))− β0(f (x))| ≤ 2k/2.

Thus

|β1(f3,1(x))− β0(f3,1(x))| = 37− 26 = 11 ≤ 29/2 ≈ 22.6

and

|β1(f3,2(x))− β0(f3,2(x))| = 45− 28 = 17 ≤ 210/2 = 32.
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In general,

|β1(fr ,1(x))− β0(fr ,1(x))| = 4r − 3r − (3r − 1)

= 4r − 2 · 3r + 1

� 2
1
2

(2r+1)

= 42r−2+ 1
4

and

|β1(fr ,2(x))− β0(fr ,2(x))| = 4r − 3r + 2r − (3r + 1)

= 4r − 2 · 3r + 2r − 1

� 2
1
2

(2r+2)

= 42r−2+ 1
2 .
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Example: A = {0, 1, 4}

fA(2`) = fA(`) + fA(`− 2)

fA(2`+ 1) = fA(`)

fA(2k+1m)

fA(2k+1m − 1)

fA(2k+1m − 2)

fA(2k+1m − 3)

fA(2k+1m − 4)


=



1 0 1 0 0

0 1 0 0 0

0 1 0 1 0

0 0 1 0 0

0 0 1 0 1





fA(2km)

fA(2km − 1)

fA(2km − 2)

fA(2km − 3)

fA(2km − 4)



The characteristic polynomial of M is g(x) = −(x − 1)4(x + 1).
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0 1 0 0 0

0 1 0 1 0

0 0 1 0 0

0 0 1 0 1





fA(2km)

fA(2km − 1)

fA(2km − 2)

fA(2km − 3)

fA(2km − 4)


The characteristic polynomial of M is g(x) = −(x − 1)4(x + 1).
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{0, 1, 4} continued

sA(r) =
2r+1−1∑
n=2r

fA(n)

=
2r−1∑

n=2r−1

(fA(2n) + fA(2n + 1))

=
2r−1∑

n=2r−1

(fA(n) + fA(n − 2) + fA(n))

= 2sA(r − 1) +
2r−1∑

n=2r−1

fA(n − 2)

= 3sA(r − 1) + fA(2r−1 − 2) + fA(2r−1 − 1)

− fA(2r − 2)− fA(2r − 1)
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I Solution to homogeneous recurrence relation

sA(r) = c13r

I Solution to inhomogeneous recurrence relation

sA(r) = c13r +c2(−1)r +c3(1)r +c4r(1)r +c5r
2(1)r +c6r

3(1)r

I Hence

lim
r→∞

sA(r)

|A|r
= c1.
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