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Warming up: Linear Optimization in five minutes

Given a linear function f : Rd → R, and a region P ⊂ Rd , suppose
we want to find max{f (x) : x ∈ P}.

If P is a polytope, i.e. the
convex hull of finitely many points in Rd , two dreams come true:

1 max{ f (x) : x ∈ P } = max{ f (v) : v vertex of P };
2 because of convexity, every local maximum is also a global

maximum.

(Naif) SIMPLEX METHOD: Start at a (random) vertex; move
to an adjacent vertex that is higher (under f ); keep climbing and
you’ll reach the top!
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Balinski’s theorem

From Neil’s talk this morning: A graph is d-connected if it has at
least d + 1 vertices, and the deletion of d − 1 or less vertices,
however chosen, leaves it connected.

(Or Menger’s theorem.)

Balinski theorem.

The graph (or equivalently, the dual graph) of every d-polytope is
d-connected.

Proof idea. Choose the d − 1 vertices that have to go (green),
and a “designated survivor” vertex x (red). The hyperplane
spanned by these d vertices chops the polytope into two polytopes,
both containing x . Apply the simplex method to both polytopes...
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Plan for today

Part I. Many Classes of Dual Graphs.

Part II. Some Algebraic Machinery.

Part III. (time permitting) Arrangements of Curves.
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Many Classes of Dual graphs

Of (pure) simplicial complexes (e.g. polytope boundaries):

Of arrangements of lines or of curves:

(There’s also a “dual multigraph” model, keeping track on
how many intersections, with multiple edges/loops.)

Of (equidimensional) subspace arrangements or algebraic
varieties:
Vertices correspond to the irreducible components C1, . . . ,Cs .
(Equidimensional means, they all have same dimension.) We
put an edge between two distinct vertices, if and only if the
corresponding components intersect in dimension one less.
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Dual graphs of curves = dual graphs of varieties

By intersecting a d-dimensional object in Pn with a generic
hyperplane, we get an object in Pn−1 with dimension d − 1, and
same dual graph!

This way you can always reduce yourself to an
(algebraic) curve arrangement with same dual graph.

picture from mathwarehouse.com

NOTE: If you started with an arrangement of hyperplanes (or of
linear subspaces), you end up with an arrangement of lines.dual graphs
of subspace

arr’ts

 =

{
dual graphs

of lines

}
⊂
{
dual graphs
of curves

}
=

{
dual graphs
of varieties

}
.
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Not all graphs are dual to a line arrangement

Attention!, graphs like

G0 = {12, 34} ∪ {15, 25, 35, 45} ∪ {16, 26, 36, 46} ∪ {17, 27, 37, 47}

are not dual to any Euclidean line arrangement!

Try drawing it. Let P = r1 ∩ r2 and let Q = r3 ∩ r4. Let p be the
plane containing r1 ∪ r2, and let q be the plane containing r3 ∪ r4.

How can a line meet all four r1, r2, r3, r4? There are only two
chances (possibly coinciding):

either it’s the line through P and Q, or

it’s the line of intersection of the planes p ∩ q

So two options!, not three. So some of the three lines r5, r6, r7
have to coincide. a contradiction
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Dual graphs of curves = all graphs

Kollar 2012: every graph is dual to some arrangement of curves.

IDEA: Start realizing Kn with n random lines in P2...

Kyle Jenkins, Urban Geometry #296, acrilic on canvas, 2010

...and then blowup “unwanted intersection points”. So,{
dual graphs

of lines

}
(
{

dual graphs
of curves

}
=

{
dual graphs
of varieties

}
= all graphs.

It remains to see how dual graphs of simpl. complexes fit the hierarchy.
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Simplicial Complexes, Seen as Varieties (Stanley-Reisner)
Definition by example:

Consider the simplicial complex ∆ below.

I∆ := (x4, x5, x6) ∩ (x1, x5, x6) ∩ (x1, x2, x6) ∩ (x1, x2, x3).

(Prime ideals ↔ facets; each prime ideal just lists the variables
corresponding to vertices that are not in that facet).

V (I∆) =

{
x4 = 0
x5 = 0
x6 = 0

}
∪

{
x1 = 0
x5 = 0
x6 = 0

}
∪

{
x1 = 0
x2 = 0
x6 = 0

}
∪

{
x1 = 0
x2 = 0
x3 = 0

}
Dual graph of V (I∆)? The intersection of the first 2 components is
{x : x4 = x5 = x6 = x1 = 0}, which is 2-dimensional ⇒ edge!
The intersection of the first and third component is
{x : x4 = x5 = x6 = x1 = x2 = 0}, which is 1-dim. ⇒ no edge!
... So dual graph of V (I∆) is same of ∆.

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements
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{dual graphs of complexes} ⊂ {dual graphs of lines}

Stanley-Reisner: simplicial complexes on n vertices are in
bijection with radical monomial ideals in C[x1, . . . , xn].

Zariski: radical ideals I in C[x1, . . . , xn] are in bijection with
algebraic objects V (I ) in An.

Composing the two, from any complex ∆ we get an algebraic
object V (I∆) ⊂ An. A special variety (a coordinate subspace
arrangement): So when we do generic hyperplane sections, we
get an arrangement of lines.

FACT

For any simplicial complex ∆, the dual graphs of ∆ and of V (I∆)
are the same.

This implies

{
dual graphs of

simplicial complexes

}
⊂
{

dual graphs
of lines

}
.

(Graphs like {12, 13, 15, 23, 24, 34, 45} show the containment is strict.)
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This implies

{
dual graphs of

simplicial complexes

}
⊂
{

dual graphs
of lines

}
.

(Graphs like {12, 13, 15, 23, 24, 34, 45} show the containment is strict.)
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Conclusions of Part I.

The notion of “dual graph” can be lifted from simplicial
complexes to algebraic varieties. (We can restrict ourselves to
dimension one if you wish, so curves or lines.)

Statements on graphs of polytopes (like Balinski’s theorem, or
diameter bounds), might extend to this more general world:

Example (from 3 slides forward - ignore obscure words for now)

For any (d − 1)-sphere ∆, the variety V (I∆) is an arithmetically
Gorenstein subspace arrangement of Castelnuovo–Mumford
regularity d + 1.

Maybe elementary facts like “the dual graph of any (d − 1)-sphere
∆ is d-connected” (Klee-Balinski) can be proven with algebraic
methods?
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Part II. The Algebraic Machinery (sketch).
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Complete intersections

Linear algebra: every k-dimensional subspace X of Pn can be
described with exactly n − k linear equations.

Non-Linear algebra: The best we can say about a variety
X ⊂ Pn, is that we need at least n − k (polynomial) equations.

Complete intersections are the varieties for which “=” holds.

The ”twisted cubic” (s3, s2t, st2, t3) of P3 is not a complete intersection: one needs at least three (hyper)surfaces
to cut it out.
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Liaison theory and Gorenstein-ness

C.I. long studied.

If the union of two varieties A and B is a
complete intersection, then there is some graded isomorphism
in local cohomology between A and B

H1
m(S/IA) ∼= H1

m(S/IB)∨(2− r).

(Somewhat similar to Alexander duality in topology, when the
union of two spaces is a sphere.) These studies go under the
name liaison theory.

Note: liaison theory (and the isomorphism above!) works also
under a weaker assumption than “complete intersection”,
called “Gorenstein”.

Among Stanley-Reisner varieties, this Gorenstein property has
been nicely explained by Stanley: “S/I∆ Gorenstein iff ∆ is
the join of a homology sphere with a simplex”.
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Regularity for Algebraists

Given a projective scheme X in Pn, ∃! saturated homogeneous
ideal IX ⊂ S := K[x0, . . . , xn] s. t. X = Proj(S/IX ); one says X is
aCM (resp. aG) if S/IX is Cohen–Macaulay (resp. Gorenstein).

One sets regX := reg IX , which is in turn defined as follows:

Recall: regularity of an ideal

Given a minimal graded free resolution
· · · → Fj → · · · → F0 → I → 0, the Castelnuovo–Mumford
regularity of I is the smallest r such that for each j , all minimal
generators of Fj have degree ≤ r + j .

Note for experts: There’s another way to define regularity if you
like local cohomology, namely

reg(S/I ) := max{i + j : H i
m(S/I )j 6= 0} and reg I = reg S/I + 1.
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Regularity for Algebraists - Examples

Example 1. If X is a line (or a hyperplane, or a linear subspace),
it has regularity 1.

Example 2. Moment curves, i.e. curves of type (t, t2, . . . , td),
have regularity 2.

Example 3. If a simplicial complex ∆ is a triangulated
(d − 1)-sphere, X = V (I∆) is aG of regularity d + 1.

Example 4. If IX = (g1, . . . , gs) is a complete intersection, then X
is aG of regularity regX = deg g1 + . . . + deg gs − s + 1.
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Regularity for Poor Combinatorialists

Recall: A graph is d-regular if every vertex has exactly d
neighbors.

If a graph is d-regular and k-connected, necessarily k ≤ d .
(If you kill all d neighbors of a vertex, you disconnect the graph,
because now the vertex is isolated. So a d-regular graph is not
(d + 1)-connected.)

Balinski, Klee (1975)

The dual graph of every (d − 1)-dimensional triangulated
homology sphere (or manifold) is d-regular and d-connected.
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Nomen est omen

Surprisingly, these two notions of regularity agree:

Theorem (B.–Di Marca–Varbaro, 2016+)

Let X be an arithmetically-Gorenstein arrangement of projective
lines. Then the dual graph of X has connectivity ≥ regX − 1.
If in addition no three lines meet in a common point, then the
graph has connectivity = regX − 1, and is (regX − 1)-regular.

(Since reg S/IX = regX − 1, one can equivalently rephrase as
“the Castelnuovo–Mumford regularity of S/IX and the regularity of
the dual graph of X coincide”.)

Special case 1: X is the Stanley–Reisner variety of a
(d − 1)-sphere ∆. Then regX = d + 1, so the dual graph of X (=
that of ∆!) is d-connected and d-regular. Balinski-Klee!

Special case 2: if X is a complete intersection. (regX is the sum
of the degree of the components, minus their number, minus 1.)
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Example 1. The 27 lines on a cubic

Corollary

Let X be an arrangement of lines in P3 that is a complete
intersection of two surfaces, of degree a and b, say.

Then each line
of the arrangement intersects at least a + b − 2 of the other lines.
No three lines share a point? ...⇒ exactly a + b − 2 other lines.

Greg Egan, The Clebsch cubic surface (in which all 27 lines are real, and there are triple points)

Example 1. Any smooth cubic surface of P3 has 27 lines on it (if
generic, no 3 share a point). The 27 lines are the complete int. of
the cubic with a union of 9 planes. So a = 3, b = 9; each line
intersects exactly 10 of the others.
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Example 2. Schläfli’s double-six

Let G be the bipartite graph on {a1, . . . , a6} ∪ {b1, . . . , b6}

where
{ai , bj} is an edge iff i 6= j . Then G is 5-regular, with diamG = 3.

Schläfli’s double-six is a line arrangement X ⊆ P3 with dual graph
G . It consists in 12 of the 27 lines on a smooth cubic Y ⊂ P3.

The intersection points of X are 30, and the vector space of quartics of P3 has dimension 35. So there is a quartic

Z ⊂ P3 passing through these 30 points. This quartic contains at least 5 points per line, so it contains each line!

So X ⊂ Z . By picking other 4 points outside of Y and not co-planar, one can also choose Z not containing Y

(because 35 > 30 + 4). So Y ∩ Z is a complete intersection containing X . But 3 · 4 = 12, so X = Y ∩ Z .

We proved X is a complete intersection, with a = 3 and b = 4: as
our Corollary claims, every line intersects exactly 5 other lines.

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements
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Example 2. Schläfli’s double-six

Let G be the bipartite graph on {a1, . . . , a6} ∪ {b1, . . . , b6} where
{ai , bj} is an edge iff i 6= j . Then G is 5-regular, with diamG = 3.
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Example 2. Schläfli’s distracted

Steal three of the 12 lines in Schläfli’s arrangement. Can the
remaining 9 lines be a complete intersection?

A. No, the dual graph is not regular.
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Part III. From Lines to Curves.
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Balinski for curve arrangements

What about Gorenstein arrangements of curves?

B.–Bolognese–Varbaro, 2015

Let X be an arithmetically-Gorenstein projective curve. Let R be
the maximum of the regularities of the irreducible components
of X . Then the dual graph of X is b reg X+R−2

R c-connected.

Line arrangements are the case R = 1.

Proof idea: we need to show that removing k − 1 of the curves, the

resulting object A is connected. Being connected can be expressed

cohomologically; but via liaison theory, the cohomology of A is related

to that of its complement B (A ∪ B is Gorenstein!). By a known

cohomological characterization of regularity, it suffices to bound from

above the regularity of B. But B consists of exactly k − 1 curves, each of

regularity ≤ R: We prove a bound of the type (k − 1) ·R, by first proving

that the regularity of curve arrangements is subadditive (new!).
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Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G?

(Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3

(smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen–Macaulay (aCM) curve, the dual
graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with
dual graph G? (Genericity arguments do not work.)

Good news! (B.–Bolognese–Varbaro, 2015)

For any connected graph G , one can canonically construct an aCM
curve XG with dual graph G , with three “bonus” features:

regXG ≤ 3 (smallest possible, can do 2 only if G a tree).

the components of XG have regularity ≤ 2 (smallest possible -
regularity 1 means “line”), they’re all rational normal curves.

no three components of XG meet at a same point.

The recipe for constructing XG is computationally hard, but it is
only a few lines long, and explicit...

Bruno Benedetti (University of Miami) Balinski’s theorem and Regularity of Line Arrangements



Construction

Say G is a graph with s vertices.

Pick s lines in P2, given by equations `i = 0, so that no three
lines have a common point. (‘Generic’ works perfectly.)

Set I =
⋂
{i ,j}/∈E(G)(`i , `j).

Let R[d ] be the subalgebra of the polynomial ring generated
by the degree-d elements of I .

Set

A[d ] =
R[d ]

(`1`2 · · · `s) ∩ R[d ]
.

The dual graph of A[d ] is G ; maybe A[d ] is not CM, but this
can be fixed taking regA[d ] many Veronese.

Example: G = K4 minus the edge 12. Let us choose `1 = x ,
`2 = y , `3 = z , `4 = x + y + z ; so I = (x , y). Then

A[3] =
C[x3, x2y , x2z , xy2, xyz , xz2, y3, y2z , yz2]

(xyz(x + y + z)) .
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The dual graph of A[d ] is G ; maybe A[d ] is not CM, but this
can be fixed taking regA[d ] many Veronese.

Example: G = K4 minus the edge 12. Let us choose `1 = x ,
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Extra frame: Proof details

Regularity can be characterized using Grothendieck duality as follows:

reg(S/I ) = max{i + j : H i
m(S/I )j 6= 0},

where H i
m stands for local cohomology with support in the maximal ideal m = (x1, . . . , xn).

Order of the prime ideals as you wish. Let IB = p1 ∩ . . . pr−1 and IA = pr ∩ . . . ∩ ps . Want to prove that
G(IA) is connected.

1 CA and CB are geometrically linked by C = Proj(S/I ) which is arit. Gorenstein; so by Migliore’s theory,
we have a graded isomorphism

H1
m(S/IA) ∼= H1

m(S/IB )∨(2− r).

2 By Derksen–Sidman, reg(IB ) ≤ r − 1, so reg(S/IB ) ≤ r − 2.

3 By definition of regularity, reg(S/IB ) ≤ r − 2 implies that H1
m(S/IB )r−2 = 0.

4 So H1
m(S/IA)0 = 0. This implies that H0(CA,OCA

) ∼= K, which in turn implies that CA is a connected
curve.
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