Balinski's theorem and Regularity of Line Arrangements

Bruno Benedetti (University of Miami)

CombinaTeXas, May 7, 2016

- Michela di Marca, Matteo Varbaro (U Genova), 2016
- Michela di Marca, Matteo Varbaro (U Genova), 2016

- Michela di Marca, Matteo Varbaro (U Genova), 2016

- Michela di Marca, Matteo Varbaro (U Genova), 2016

- (curve arrangements) Barbara Bolognese (Northeastern), 2015
- Michela di Marca, Matteo Varbaro (U Genova), 2016

- (curve arrangements) Barbara Bolognese (Northeastern), 2015

- Michela di Marca, Matteo Varbaro (U Genova), 2016

- (curve arrangements) Barbara Bolognese (Northeastern), 2015

Warming up: Linear Optimization in five minutes

Given a linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and a region $P \subset \mathbb{R}^{d}$, suppose we want to find $\max \{f(\underline{x}): \underline{x} \in P\}$.

Given a linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and a region $P \subset \mathbb{R}^{d}$, suppose we want to find $\max \{f(\underline{x}): \underline{x} \in P\}$. If P is a polytope, i.e. the convex hull of finitely many points in \mathbb{R}^{d}, two dreams come true:

Given a linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and a region $P \subset \mathbb{R}^{d}$, suppose we want to find $\max \{f(\underline{x}): \underline{x} \in P\}$. If P is a polytope, i.e. the convex hull of finitely many points in \mathbb{R}^{d}, two dreams come true:
(1) $\max \{f(\underline{x}): \underline{x} \in P\}=\max \{f(\underline{v}): \underline{v}$ vertex of $P\}$;

Given a linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and a region $P \subset \mathbb{R}^{d}$, suppose we want to find $\max \{f(\underline{x}): \underline{x} \in P\}$. If P is a polytope, i.e. the convex hull of finitely many points in \mathbb{R}^{d}, two dreams come true:
(1) $\max \{f(\underline{x}): \underline{x} \in P\}=\max \{f(\underline{v}): \underline{v}$ vertex of $P\}$;
(2) because of convexity, every local maximum is also a global maximum.

Given a linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and a region $P \subset \mathbb{R}^{d}$, suppose we want to find $\max \{f(\underline{x}): \underline{x} \in P\}$. If P is a polytope, i.e. the convex hull of finitely many points in \mathbb{R}^{d}, two dreams come true:
(1) $\max \{f(\underline{x}): \underline{x} \in P\}=\max \{f(\underline{v}): \underline{v}$ vertex of $P\}$;
(2) because of convexity, every local maximum is also a global maximum.

Given a linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and a region $P \subset \mathbb{R}^{d}$, suppose we want to find $\max \{f(\underline{x}): \underline{x} \in P\}$. If P is a polytope, i.e. the convex hull of finitely many points in \mathbb{R}^{d}, two dreams come true:
(1) $\max \{f(\underline{x}): \underline{x} \in P\}=\max \{f(\underline{v}): \underline{v}$ vertex of $P\}$;
(2) because of convexity, every local maximum is also a global maximum.

(Naif) SIMPLEX METHOD: Start at a (random) vertex;

Given a linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and a region $P \subset \mathbb{R}^{d}$, suppose we want to find $\max \{f(\underline{x}): \underline{x} \in P\}$. If P is a polytope, i.e. the convex hull of finitely many points in \mathbb{R}^{d}, two dreams come true:
(1) $\max \{f(\underline{x}): \underline{x} \in P\}=\max \{f(\underline{v}): \underline{v}$ vertex of $P\}$;
(2) because of convexity, every local maximum is also a global maximum.

(Naif) SIMPLEX METHOD: Start at a (random) vertex; move to an adjacent vertex that is higher (under f);

Given a linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and a region $P \subset \mathbb{R}^{d}$, suppose we want to find $\max \{f(\underline{x}): \underline{x} \in P\}$. If P is a polytope, i.e. the convex hull of finitely many points in \mathbb{R}^{d}, two dreams come true:
(1) $\max \{f(\underline{x}): \underline{x} \in P\}=\max \{f(\underline{v}): \underline{v}$ vertex of $P\}$;
(2) because of convexity, every local maximum is also a global maximum.

(Naif) SIMPLEX METHOD: Start at a (random) vertex; move to an adjacent vertex that is higher (under f); keep climbing and you'll reach the top!

Given a linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and a region $P \subset \mathbb{R}^{d}$, suppose we want to find $\max \{f(\underline{x}): \underline{x} \in P\}$. If P is a polytope, i.e. the convex hull of finitely many points in \mathbb{R}^{d}, two dreams come true:
(1) $\max \{f(\underline{x}): \underline{x} \in P\}=\max \{f(\underline{v}): \underline{v}$ vertex of $P\}$;
(2) because of convexity, every local maximum is also a global maximum.

(Naif) SIMPLEX METHOD: Start at a (random) vertex; move to an adjacent vertex that is higher (under f); keep climbing and you'll reach the top!

From Neil's talk this morning: A graph is d-connected if it has at least $d+1$ vertices, and the deletion of $d-1$ or less vertices, however chosen, leaves it connected.

From Neil's talk this morning: A graph is d-connected if it has at least $d+1$ vertices, and the deletion of $d-1$ or less vertices, however chosen, leaves it connected. (Or Menger's theorem.)

Balinski theorem.

The graph (or equivalently, the dual graph) of every d-polytope is d-connected.

From Neil's talk this morning: A graph is d-connected if it has at least $d+1$ vertices, and the deletion of $d-1$ or less vertices, however chosen, leaves it connected. (Or Menger's theorem.)

Balinski theorem.

The graph (or equivalently, the dual graph) of every d-polytope is d-connected.

Proof idea. Choose the $d-1$ vertices that have to go (green), and a "designated survivor" vertex x (red).

From Neil's talk this morning: A graph is d-connected if it has at least $d+1$ vertices, and the deletion of $d-1$ or less vertices, however chosen, leaves it connected. (Or Menger's theorem.)

Balinski theorem.

The graph (or equivalently, the dual graph) of every d-polytope is d-connected.

Proof idea. Choose the $d-1$ vertices that have to go (green), and a "designated survivor" vertex x (red). The hyperplane spanned by these d vertices chops the polytope into two polytopes, both containing x.

Balinski's theorem

From Neil's talk this morning: A graph is d-connected if it has at least $d+1$ vertices, and the deletion of $d-1$ or less vertices, however chosen, leaves it connected. (Or Menger's theorem.)

Balinski theorem.

The graph (or equivalently, the dual graph) of every d-polytope is d-connected.

Proof idea. Choose the $d-1$ vertices that have to go (green), and a "designated survivor" vertex x (red). The hyperplane spanned by these d vertices chops the polytope into two polytopes, both containing x. Apply the simplex method to both polytopes...

Balinski's theorem

From Neil's talk this morning: A graph is d-connected if it has at least $d+1$ vertices, and the deletion of $d-1$ or less vertices, however chosen, leaves it connected. (Or Menger's theorem.)

Balinski theorem.

The graph (or equivalently, the dual graph) of every d-polytope is d-connected.

Proof idea. Choose the $d-1$ vertices that have to go (green), and a "designated survivor" vertex x (red). The hyperplane spanned by these d vertices chops the polytope into two polytopes, both containing x. Apply the simplex method to both polytopes...

Bruno Benedetti (University of Miami)

Part I. Many Classes of Dual Graphs.

Part I. Many Classes of Dual Graphs.
 Part II. Some Algebraic Machinery.

Part I. Many Classes of Dual Graphs.
Part II. Some Algebraic Machinery.
Part III. (time permitting) Arrangements of Curves.

Many Classes of Dual graphs

Many Classes of Dual graphs

- Of (pure) simplicial complexes (e.g. polytope boundaries):

Many Classes of Dual graphs

- Of (pure) simplicial complexes (e.g. polytope boundaries):

- Of arrangements of lines or of curves:

Many Classes of Dual graphs

- Of (pure) simplicial complexes (e.g. polytope boundaries):

- Of arrangements of lines or of curves:

(There's also a "dual multigraph" model, keeping track on how many intersections, with multiple edges/loops.)

Many Classes of Dual graphs

- Of (pure) simplicial complexes (e.g. polytope boundaries):

- Of arrangements of lines or of curves:

(There's also a "dual multigraph" model, keeping track on how many intersections, with multiple edges/loops.)
- Of (equidimensional) subspace arrangements or algebraic varieties:

Many Classes of Dual graphs

- Of (pure) simplicial complexes (e.g. polytope boundaries):

- Of arrangements of lines or of curves:

(There's also a "dual multigraph" model, keeping track on how many intersections, with multiple edges/loops.)
- Of (equidimensional) subspace arrangements or algebraic varieties:

Many Classes of Dual graphs

- Of (pure) simplicial complexes (e.g. polytope boundaries):

- Of arrangements of lines or of curves:

(There's also a "dual multigraph" model, keeping track on how many intersections, with multiple edges/loops.)
- Of (equidimensional) subspace arrangements or algebraic varieties:
Vertices correspond to the irreducible components C_{1}, \ldots, C_{s}.

Many Classes of Dual graphs

- Of (pure) simplicial complexes (e.g. polytope boundaries):

- Of arrangements of lines or of curves:

(There's also a "dual multigraph" model, keeping track on how many intersections, with multiple edges/loops.)
- Of (equidimensional) subspace arrangements or algebraic varieties:
Vertices correspond to the irreducible components C_{1}, \ldots, C_{s}.
(Equidimensional means, they all have same dimension.)
- Of (pure) simplicial complexes (e.g. polytope boundaries):

- Of arrangements of lines or of curves:

(There's also a "dual multigraph" model, keeping track on how many intersections, with multiple edges/loops.)
- Of (equidimensional) subspace arrangements or algebraic varieties:
Vertices correspond to the irreducible components C_{1}, \ldots, C_{s}.
(Equidimensional means, they all have same dimension.) We put an edge between two distinct vertices, if and only if the corresponding components intersect in dimension one less.

By intersecting a d-dimensional object in \mathbb{P}^{n} with a generic hyperplane, we get an object in \mathbb{P}^{n-1} with dimension $d-1$, and same dual graph!

By intersecting a d-dimensional object in \mathbb{P}^{n} with a generic hyperplane, we get an object in \mathbb{P}^{n-1} with dimension $d-1$, and same dual graph! This way you can always reduce yourself to an (algebraic) curve arrangement with same dual graph.

By intersecting a d-dimensional object in \mathbb{P}^{n} with a generic hyperplane, we get an object in \mathbb{P}^{n-1} with dimension $d-1$, and same dual graph! This way you can always reduce yourself to an (algebraic) curve arrangement with same dual graph.

picture from mathwarehouse.com

By intersecting a d-dimensional object in \mathbb{P}^{n} with a generic hyperplane, we get an object in \mathbb{P}^{n-1} with dimension $d-1$, and same dual graph! This way you can always reduce yourself to an (algebraic) curve arrangement with same dual graph.

picture from mathwarehouse.com
NOTE: If you started with an arrangement of hyperplanes (or of linear subspaces), you end up with an arrangement of lines.

By intersecting a d-dimensional object in \mathbb{P}^{n} with a generic hyperplane, we get an object in \mathbb{P}^{n-1} with dimension $d-1$, and same dual graph! This way you can always reduce yourself to an (algebraic) curve arrangement with same dual graph.

picture from mathwarehouse.com
NOTE: If you started with an arrangement of hyperplanes (or of linear subspaces), you end up with an arrangement of lines.
$\left\{\begin{array}{c}\text { dual graphs } \\ \text { of subspace } \\ \text { arr'ts }\end{array}\right\}=\left\{\begin{array}{c}\text { dual graphs } \\ \text { of lines }\end{array}\right\}$

By intersecting a d-dimensional object in \mathbb{P}^{n} with a generic hyperplane, we get an object in \mathbb{P}^{n-1} with dimension $d-1$, and same dual graph! This way you can always reduce yourself to an (algebraic) curve arrangement with same dual graph.

picture from mathwarehouse.com
NOTE: If you started with an arrangement of hyperplanes (or of linear subspaces), you end up with an arrangement of lines.
$\left\{\begin{array}{c}\text { dual graphs } \\ \text { of subspace } \\ \text { arr'ts }\end{array}\right\}=\left\{\begin{array}{c}\text { dual graphs } \\ \text { of lines }\end{array}\right\} \subset\left\{\begin{array}{c}\text { dual graphs } \\ \text { of curves }\end{array}\right\}$

By intersecting a d-dimensional object in \mathbb{P}^{n} with a generic hyperplane, we get an object in \mathbb{P}^{n-1} with dimension $d-1$, and same dual graph! This way you can always reduce yourself to an (algebraic) curve arrangement with same dual graph.

picture from mathwarehouse.com
NOTE: If you started with an arrangement of hyperplanes (or of linear subspaces), you end up with an arrangement of lines.
$\left\{\begin{array}{c}\text { dual graphs } \\ \text { of subspace } \\ \text { arr'ts }\end{array}\right\}=\left\{\begin{array}{c}\text { dual graphs } \\ \text { of lines }\end{array}\right\} \subset\left\{\begin{array}{c}\text { dual graphs } \\ \text { of curves }\end{array}\right\}=\left\{\begin{array}{c}\text { dual graphs } \\ \text { of varieties }\end{array}\right\}$.

Attention!, graphs like
$G_{0}=\{12,34\} \cup\{15,25,35,45\} \cup\{16,26,36,46\} \cup\{17,27,37,47\}$
are not dual to any Euclidean line arrangement!

Attention!, graphs like
$G_{0}=\{12,34\} \cup\{15,25,35,45\} \cup\{16,26,36,46\} \cup\{17,27,37,47\}$
are not dual to any Euclidean line arrangement!
Try drawing it. Let $P=r_{1} \cap r_{2}$ and let $Q=r_{3} \cap r_{4}$.

Attention!, graphs like
$G_{0}=\{12,34\} \cup\{15,25,35,45\} \cup\{16,26,36,46\} \cup\{17,27,37,47\}$
are not dual to any Euclidean line arrangement!
Try drawing it. Let $P=r_{1} \cap r_{2}$ and let $Q=r_{3} \cap r_{4}$. Let p be the plane containing $r_{1} \cup r_{2}$, and let q be the plane containing $r_{3} \cup r_{4}$.

Attention!, graphs like
$G_{0}=\{12,34\} \cup\{15,25,35,45\} \cup\{16,26,36,46\} \cup\{17,27,37,47\}$
are not dual to any Euclidean line arrangement!
Try drawing it. Let $P=r_{1} \cap r_{2}$ and let $Q=r_{3} \cap r_{4}$. Let p be the plane containing $r_{1} \cup r_{2}$, and let q be the plane containing $r_{3} \cup r_{4}$.

How can a line meet all four $r_{1}, r_{2}, r_{3}, r_{4}$?

Attention!, graphs like

$$
G_{0}=\{12,34\} \cup\{15,25,35,45\} \cup\{16,26,36,46\} \cup\{17,27,37,47\}
$$

are not dual to any Euclidean line arrangement!
Try drawing it. Let $P=r_{1} \cap r_{2}$ and let $Q=r_{3} \cap r_{4}$. Let p be the plane containing $r_{1} \cup r_{2}$, and let q be the plane containing $r_{3} \cup r_{4}$.

How can a line meet all four $r_{1}, r_{2}, r_{3}, r_{4}$? There are only two chances (possibly coinciding):

- either it's the line through P and Q,

Attention!, graphs like

$$
G_{0}=\{12,34\} \cup\{15,25,35,45\} \cup\{16,26,36,46\} \cup\{17,27,37,47\}
$$

are not dual to any Euclidean line arrangement!
Try drawing it. Let $P=r_{1} \cap r_{2}$ and let $Q=r_{3} \cap r_{4}$. Let p be the plane containing $r_{1} \cup r_{2}$, and let q be the plane containing $r_{3} \cup r_{4}$.

How can a line meet all four $r_{1}, r_{2}, r_{3}, r_{4}$? There are only two chances (possibly coinciding):

- either it's the line through P and Q, or
- it's the line of intersection of the planes $p \cap q$

Attention!, graphs like
$G_{0}=\{12,34\} \cup\{15,25,35,45\} \cup\{16,26,36,46\} \cup\{17,27,37,47\}$
are not dual to any Euclidean line arrangement!
Try drawing it. Let $P=r_{1} \cap r_{2}$ and let $Q=r_{3} \cap r_{4}$. Let p be the plane containing $r_{1} \cup r_{2}$, and let q be the plane containing $r_{3} \cup r_{4}$.

How can a line meet all four $r_{1}, r_{2}, r_{3}, r_{4}$? There are only two chances (possibly coinciding):

- either it's the line through P and Q, or
- it's the line of intersection of the planes $p \cap q$

So two options!, not three.

Attention!, graphs like
$G_{0}=\{12,34\} \cup\{15,25,35,45\} \cup\{16,26,36,46\} \cup\{17,27,37,47\}$
are not dual to any Euclidean line arrangement!
Try drawing it. Let $P=r_{1} \cap r_{2}$ and let $Q=r_{3} \cap r_{4}$. Let p be the plane containing $r_{1} \cup r_{2}$, and let q be the plane containing $r_{3} \cup r_{4}$.

How can a line meet all four $r_{1}, r_{2}, r_{3}, r_{4}$? There are only two chances (possibly coinciding):

- either it's the line through P and Q, or
- it's the line of intersection of the planes $p \cap q$

So two options!, not three. So some of the three lines r_{5}, r_{6}, r_{7} have to coincide.

Attention!, graphs like
$G_{0}=\{12,34\} \cup\{15,25,35,45\} \cup\{16,26,36,46\} \cup\{17,27,37,47\}$
are not dual to any Euclidean line arrangement!
Try drawing it. Let $P=r_{1} \cap r_{2}$ and let $Q=r_{3} \cap r_{4}$. Let p be the plane containing $r_{1} \cup r_{2}$, and let q be the plane containing $r_{3} \cup r_{4}$.

How can a line meet all four $r_{1}, r_{2}, r_{3}, r_{4}$? There are only two chances (possibly coinciding):

- either it's the line through P and Q, or
- it's the line of intersection of the planes $p \cap q$

So two options!, not three. So some of the three lines r_{5}, r_{6}, r_{7} have to coincide. a contradiction

Kollar 2012: every graph is dual to some arrangement of curves.

Kollar 2012: every graph is dual to some arrangement of curves.

Kollar 2012: every graph is dual to some arrangement of curves.
IDEA: Start realizing K_{n} with n random lines in $\mathbb{P}^{2} \ldots$

Kollar 2012: every graph is dual to some arrangement of curves.
IDEA: Start realizing K_{n} with n random lines in $\mathbb{P}^{2} \ldots$

Kyle Jenkins, Urban Geometry \#296, acrilic on canvas, 2010

Kollar 2012: every graph is dual to some arrangement of curves.
IDEA: Start realizing K_{n} with n random lines in $\mathbb{P}^{2} \ldots$

Kyle Jenkins, Urban Geometry \#296, acrilic on canvas, 2010

Kollar 2012: every graph is dual to some arrangement of curves.
IDEA: Start realizing K_{n} with n random lines in $\mathbb{P}^{2} \ldots$

Kyle Jenkins, Urban Geometry \#296, acrilic on canvas, 2010
...and then blowup "unwanted intersection points".

Kollar 2012: every graph is dual to some arrangement of curves.
IDEA: Start realizing K_{n} with n random lines in $\mathbb{P}^{2} \ldots$

Kyle Jenkins, Urban Geometry \#296, acrilic on canvas, 2010
...and then blowup "unwanted intersection points". So,

Dual graphs of curves $=$ all graphs

Kollar 2012: every graph is dual to some arrangement of curves.
IDEA: Start realizing K_{n} with n random lines in $\mathbb{P}^{2} \ldots$

Kyle Jenkins, Urban Geometry \#296, acrilic on canvas, 2010
...and then blowup "unwanted intersection points". So,
$\left\{\begin{array}{c}\text { dual graphs } \\ \text { of lines }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { dual graphs } \\ \text { of curves }\end{array}\right\}=\left\{\begin{array}{c}\text { dual graphs } \\ \text { of varieties }\end{array}\right\}=$ all graphs

Dual graphs of curves $=$ all graphs

Kollar 2012: every graph is dual to some arrangement of curves.
IDEA: Start realizing K_{n} with n random lines in $\mathbb{P}^{2} \ldots$

Kyle Jenkins, Urban Geometry \#296, acrilic on canvas, 2010
...and then blowup "unwanted intersection points". So,
$\left\{\begin{array}{c}\text { dual graphs } \\ \text { of lines }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { dual graphs } \\ \text { of curves }\end{array}\right\}=\left\{\begin{array}{c}\text { dual graphs } \\ \text { of varieties }\end{array}\right\}=$ all graphs
It remains to see how dual graphs of simpl. complexes fit the hierarchy.

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example:

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).

$$
V\left(I_{\Delta}\right)=\left\{\begin{array}{l}
x_{4}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}=0
\end{array}\right\}
$$

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).

$$
V\left(I_{\Delta}\right)=\left\{\begin{array}{l}
x_{4}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}=0
\end{array}\right\}
$$

Dual graph of $V\left(I_{\Delta}\right)$?

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).

$$
V\left(I_{\Delta}\right)=\left\{\begin{array}{l}
x_{4}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}=0
\end{array}\right\}
$$

Dual graph of $V\left(I_{\Delta}\right)$? The intersection of the first 2 components is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=0\right\}$,

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).

$$
V\left(I_{\Delta}\right)=\left\{\begin{array}{l}
x_{4}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}=0
\end{array}\right\}
$$

Dual graph of $V\left(I_{\Delta}\right)$? The intersection of the first 2 components is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=0\right\}$, which is 2-dimensional

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).

$$
V\left(I_{\Delta}\right)=\left\{\begin{array}{l}
x_{4}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}=0
\end{array}\right\}
$$

Dual graph of $V\left(I_{\Delta}\right)$? The intersection of the first 2 components is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=0\right\}$, which is 2-dimensional \Rightarrow edge!

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).

$$
V\left(I_{\Delta}\right)=\left\{\begin{array}{l}
x_{4}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}=0
\end{array}\right\}
$$

Dual graph of $V\left(I_{\Delta}\right)$? The intersection of the first 2 components is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=0\right\}$, which is 2-dimensional \Rightarrow edge!
The intersection of the first and third component is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=x_{2}=0\right\}$,

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).

$$
V\left(I_{\Delta}\right)=\left\{\begin{array}{l}
x_{4}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}=0
\end{array}\right\}
$$

Dual graph of $V\left(I_{\Delta}\right)$? The intersection of the first 2 components is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=0\right\}$, which is 2-dimensional \Rightarrow edge!
The intersection of the first and third component is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=x_{2}=0\right\}$, which is 1 -dim.

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).
$V\left(I_{\Delta}\right)=\left\{\begin{array}{l}x_{4}=0 \\ x_{5}=0 \\ x_{6}=0\end{array}\right\} \cup\left\{\begin{array}{l}x_{1}=0 \\ x_{5}=0 \\ x_{6}=0\end{array}\right\} \cup\left\{\begin{array}{l}x_{1}=0 \\ x_{2}=0 \\ x_{6}=0\end{array}\right\} \cup\left\{\begin{array}{l}x_{1}=0 \\ x_{2}=0 \\ x_{3}=0\end{array}\right\}$
Dual graph of $V\left(I_{\Delta}\right)$? The intersection of the first 2 components is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=0\right\}$, which is 2-dimensional \Rightarrow edge!
The intersection of the first and third component is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=x_{2}=0\right\}$, which is 1 -dim. \Rightarrow no edge!

Simplicial Complexes, Seen as Varieties (Stanley-Reisner)

Definition by example: Consider the simplicial complex Δ below.

$$
I_{\Delta}:=\left(x_{4}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{5}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{6}\right) \cap\left(x_{1}, x_{2}, x_{3}\right) .
$$

(Prime ideals \leftrightarrow facets; each prime ideal just lists the variables corresponding to vertices that are not in that facet).

$$
V\left(I_{\Delta}\right)=\left\{\begin{array}{l}
x_{4}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{5}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{6}=0
\end{array}\right\} \cup\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}=0
\end{array}\right\}
$$

Dual graph of $V\left(I_{\Delta}\right)$? The intersection of the first 2 components is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=0\right\}$, which is 2-dimensional \Rightarrow edge! The intersection of the first and third component is $\left\{\mathbf{x}: x_{4}=x_{5}=x_{6}=x_{1}=x_{2}=0\right\}$, which is 1-dim. \Rightarrow no edge!
... So dual graph of $V\left(I_{\Delta}\right)$ is same of Δ.
$\{d u a l$ graphs of complexes $\} \subset\{$ dual graphs of lines\}

\{dual graphs of complexes\} \{dual graphs of lines\}

- Stanley-Reisner: simplicial complexes on n vertices are in bijection with radical monomial ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

$\{$ dual graphs of complexes $\} \subset$ \{dual graphs of lines $\}$

- Stanley-Reisner: simplicial complexes on n vertices are in bijection with radical monomial ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- Zariski: radical ideals / in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are in bijection with algebraic objects $V(I)$ in \mathbb{A}^{n}.

$\{$ dual graphs of complexes $\} \subset$ \{dual graphs of lines $\}$

- Stanley-Reisner: simplicial complexes on n vertices are in bijection with radical monomial ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- Zariski: radical ideals I in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are in bijection with algebraic objects $V(I)$ in \mathbb{A}^{n}.
- Composing the two, from any complex Δ we get an algebraic object $V\left(I_{\Delta}\right) \subset \mathbb{A}^{n}$.

$\{$ dual graphs of complexes $\} \subset$ \{dual graphs of lines $\}$

- Stanley-Reisner: simplicial complexes on n vertices are in bijection with radical monomial ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- Zariski: radical ideals $/$ in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are in bijection with algebraic objects $V(I)$ in \mathbb{A}^{n}.
- Composing the two, from any complex Δ we get an algebraic object $V\left(I_{\Delta}\right) \subset \mathbb{A}^{n}$. A special variety (a coordinate subspace arrangement):

$\{$ dual graphs of complexes $\} \subset$ \{dual graphs of lines $\}$

- Stanley-Reisner: simplicial complexes on n vertices are in bijection with radical monomial ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- Zariski: radical ideals / in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are in bijection with algebraic objects $V(I)$ in \mathbb{A}^{n}.
- Composing the two, from any complex Δ we get an algebraic object $V\left(I_{\Delta}\right) \subset \mathbb{A}^{n}$. A special variety (a coordinate subspace arrangement): So when we do generic hyperplane sections, we get an arrangement of lines.
- Stanley-Reisner: simplicial complexes on n vertices are in bijection with radical monomial ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- Zariski: radical ideals $/$ in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are in bijection with algebraic objects $V(I)$ in \mathbb{A}^{n}.
- Composing the two, from any complex Δ we get an algebraic object $V\left(I_{\Delta}\right) \subset \mathbb{A}^{n}$. A special variety (a coordinate subspace arrangement): So when we do generic hyperplane sections, we get an arrangement of lines.

FACT

For any simplicial complex Δ, the dual graphs of Δ and of $V\left(I_{\Delta}\right)$ are the same.

- Stanley-Reisner: simplicial complexes on n vertices are in bijection with radical monomial ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- Zariski: radical ideals $/$ in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are in bijection with algebraic objects $V(I)$ in \mathbb{A}^{n}.
- Composing the two, from any complex Δ we get an algebraic object $V\left(I_{\Delta}\right) \subset \mathbb{A}^{n}$. A special variety (a coordinate subspace arrangement): So when we do generic hyperplane sections, we get an arrangement of lines.

FACT

For any simplicial complex Δ, the dual graphs of Δ and of $V\left(I_{\Delta}\right)$ are the same.

- Stanley-Reisner: simplicial complexes on n vertices are in bijection with radical monomial ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- Zariski: radical ideals $/$ in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are in bijection with algebraic objects $V(I)$ in \mathbb{A}^{n}.
- Composing the two, from any complex Δ we get an algebraic object $V\left(I_{\Delta}\right) \subset \mathbb{A}^{n}$. A special variety (a coordinate subspace arrangement): So when we do generic hyperplane sections, we get an arrangement of lines.

FACT

For any simplicial complex Δ, the dual graphs of Δ and of $V\left(I_{\Delta}\right)$ are the same.

$$
\text { This implies }\left\{\begin{array}{c}
\text { dual graphs of } \\
\text { simplicial complexes }
\end{array}\right\} \subset\left\{\begin{array}{c}
\text { dual graphs } \\
\text { of lines }
\end{array}\right\} .
$$

(Graphs like $\{12,13,15,23,24,34,45\}$ show the containment is strict.)

Conclusions of Part I.

- The notion of "dual graph" can be lifted from simplicial complexes to algebraic varieties.
- The notion of "dual graph" can be lifted from simplicial complexes to algebraic varieties. (We can restrict ourselves to dimension one if you wish, so curves or lines.)
- The notion of "dual graph" can be lifted from simplicial complexes to algebraic varieties. (We can restrict ourselves to dimension one if you wish, so curves or lines.)
- Statements on graphs of polytopes (like Balinski's theorem, or diameter bounds), might extend to this more general world:
- The notion of "dual graph" can be lifted from simplicial complexes to algebraic varieties. (We can restrict ourselves to dimension one if you wish, so curves or lines.)
- Statements on graphs of polytopes (like Balinski's theorem, or diameter bounds), might extend to this more general world:

Conclusions of Part I.

- The notion of "dual graph" can be lifted from simplicial complexes to algebraic varieties. (We can restrict ourselves to dimension one if you wish, so curves or lines.)
- Statements on graphs of polytopes (like Balinski's theorem, or diameter bounds), might extend to this more general world:

Example

Conclusions of Part I.

- The notion of "dual graph" can be lifted from simplicial complexes to algebraic varieties. (We can restrict ourselves to dimension one if you wish, so curves or lines.)
- Statements on graphs of polytopes (like Balinski's theorem, or diameter bounds), might extend to this more general world:

Example (from 3 slides forward - ignore obscure words for now)

For any $(d-1)$-sphere Δ, the variety $V\left(I_{\Delta}\right)$ is an arithmetically Gorenstein subspace arrangement of Castelnuovo-Mumford regularity $d+1$.

Conclusions of Part I.

- The notion of "dual graph" can be lifted from simplicial complexes to algebraic varieties. (We can restrict ourselves to dimension one if you wish, so curves or lines.)
- Statements on graphs of polytopes (like Balinski's theorem, or diameter bounds), might extend to this more general world:

Example (from 3 slides forward - ignore obscure words for now)

For any $(d-1)$-sphere Δ, the variety $V\left(I_{\Delta}\right)$ is an arithmetically Gorenstein subspace arrangement of Castelnuovo-Mumford regularity $d+1$.

- The notion of "dual graph" can be lifted from simplicial complexes to algebraic varieties. (We can restrict ourselves to dimension one if you wish, so curves or lines.)
- Statements on graphs of polytopes (like Balinski's theorem, or diameter bounds), might extend to this more general world:

Example (from 3 slides forward - ignore obscure words for now)

For any $(d-1)$-sphere Δ, the variety $V\left(I_{\Delta}\right)$ is an arithmetically Gorenstein subspace arrangement of Castelnuovo-Mumford regularity $d+1$.

Maybe elementary facts like "the dual graph of any $(d-1)$-sphere Δ is d-connected" (Klee-Balinski) can be proven with algebraic methods?

- The notion of "dual graph" can be lifted from simplicial complexes to algebraic varieties. (We can restrict ourselves to dimension one if you wish, so curves or lines.)
- Statements on graphs of polytopes (like Balinski's theorem, or diameter bounds), might extend to this more general world:

Example (from 3 slides forward - ignore obscure words for now)

For any $(d-1)$-sphere Δ, the variety $V\left(I_{\Delta}\right)$ is an arithmetically Gorenstein subspace arrangement of Castelnuovo-Mumford regularity $d+1$.

Maybe elementary facts like "the dual graph of any $(d-1)$-sphere Δ is d-connected" (Klee-Balinski) can be proven with algebraic methods?

Part II. The Algebraic Machinery (sketch).

Complete intersections

Complete intersections

Linear algebra: every k-dimensional subspace X of \mathbb{P}^{n} can be described with exactly $n-k$ linear equations.

Linear algebra: every k-dimensional subspace X of \mathbb{P}^{n} can be described with exactly $n-k$ linear equations.

Non-Linear algebra: The best we can say about a variety $X \subset \mathbb{P}^{n}$, is that we need at least $n-k$ (polynomial) equations.

Linear algebra: every k-dimensional subspace X of \mathbb{P}^{n} can be described with exactly $n-k$ linear equations.

Non-Linear algebra: The best we can say about a variety $X \subset \mathbb{P}^{n}$, is that we need at least $n-k$ (polynomial) equations.

Linear algebra: every k-dimensional subspace X of \mathbb{P}^{n} can be described with exactly $n-k$ linear equations.

Non-Linear algebra: The best we can say about a variety $X \subset \mathbb{P}^{n}$, is that we need at least $n-k$ (polynomial) equations.

Complete intersections are the varieties for which " $=$ " holds.

The "twisted cubic" $\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)$ of \mathbb{P}^{3} is not a complete intersection: one needs at least three (hyper)surfaces to cut it out.

- C.I. long studied.
- C.I. long studied. If the union of two varieties A and B is a complete intersection, then there is some graded isomorphism in local cohomology between A and B

$$
H_{\mathfrak{m}}^{1}\left(S / I_{A}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)^{\vee}(2-r) .
$$

- C.I. long studied. If the union of two varieties A and B is a complete intersection, then there is some graded isomorphism in local cohomology between A and B

$$
H_{\mathfrak{m}}^{1}\left(S / I_{A}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)^{\vee}(2-r)
$$

(Somewhat similar to Alexander duality in topology, when the union of two spaces is a sphere.)

- C.I. long studied. If the union of two varieties A and B is a complete intersection, then there is some graded isomorphism in local cohomology between A and B

$$
H_{\mathfrak{m}}^{1}\left(S / I_{A}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)^{\vee}(2-r)
$$

(Somewhat similar to Alexander duality in topology, when the union of two spaces is a sphere.) These studies go under the name liaison theory.

- Note: liaison theory (and the isomorphism above!) works also under a weaker assumption than "complete intersection", called "Gorenstein".
- C.I. long studied. If the union of two varieties A and B is a complete intersection, then there is some graded isomorphism in local cohomology between A and B

$$
H_{\mathfrak{m}}^{1}\left(S / I_{A}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)^{\vee}(2-r)
$$

(Somewhat similar to Alexander duality in topology, when the union of two spaces is a sphere.) These studies go under the name liaison theory.

- Note: liaison theory (and the isomorphism above!) works also under a weaker assumption than "complete intersection", called "Gorenstein".
- Among Stanley-Reisner varieties, this Gorenstein property has been nicely explained by Stanley: " S / I_{Δ} Gorenstein iff Δ is the join of a homology sphere with a simplex".

Given a projective scheme X in \mathbb{P}^{n}, \exists ! saturated homogeneous ideal $I_{X} \subset S:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ s. t. $X=\operatorname{Proj}\left(S / I_{X}\right)$; one says X is aCM (resp. aG) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein).

Given a projective scheme X in \mathbb{P}^{n}, \exists ! saturated homogeneous ideal $I_{X} \subset S:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ s. t. $X=\operatorname{Proj}\left(S / I_{X}\right)$; one says X is aCM (resp. aG) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein). One sets reg $X:=\operatorname{reg} I_{X}$, which is in turn defined as follows:

Given a projective scheme X in \mathbb{P}^{n}, \exists ! saturated homogeneous ideal $I_{X} \subset S:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ s. t. $X=\operatorname{Proj}\left(S / I_{X}\right)$; one says X is aCM (resp. aG) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein). One sets reg $X:=\operatorname{reg} I_{X}$, which is in turn defined as follows:

Given a projective scheme X in \mathbb{P}^{n}, \exists ! saturated homogeneous ideal $I_{X} \subset S:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ s. t. $X=\operatorname{Proj}\left(S / I_{X}\right)$; one says X is aCM (resp. aG) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein). One sets reg $X:=\operatorname{reg} I_{X}$, which is in turn defined as follows:

Regularity for Algebraists

Given a projective scheme X in \mathbb{P}^{n}, \exists ! saturated homogeneous ideal $I_{X} \subset S:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ s. t. $X=\operatorname{Proj}\left(S / I_{X}\right)$; one says X is aCM (resp. aG) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein). One sets reg $X:=\operatorname{reg} I_{X}$, which is in turn defined as follows:

Recall: regularity of an ideal

Given a minimal graded free resolution
$\cdots \rightarrow F_{j} \rightarrow \cdots \rightarrow F_{0} \rightarrow I \rightarrow 0$, the Castelnuovo-Mumford
regularity of l is the smallest r such that for each j, all minimal generators of F_{j} have degree $\leq r+j$.

Note for experts:

Regularity for Algebraists

Given a projective scheme X in \mathbb{P}^{n}, \exists ! saturated homogeneous ideal $I_{X} \subset S:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ s. t. $X=\operatorname{Proj}\left(S / I_{X}\right)$; one says X is aCM (resp. aG) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein). One sets reg $X:=\operatorname{reg} I_{X}$, which is in turn defined as follows:

Recall: regularity of an ideal

Given a minimal graded free resolution
$\cdots \rightarrow F_{j} \rightarrow \cdots \rightarrow F_{0} \rightarrow I \rightarrow 0$, the Castelnuovo-Mumford
regularity of I is the smallest r such that for each j, all minimal generators of F_{j} have degree $\leq r+j$.

Note for experts: There's another way to define regularity if you like local cohomology, namely

Regularity for Algebraists

Given a projective scheme X in \mathbb{P}^{n}, \exists ! saturated homogeneous ideal $I_{X} \subset S:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ s. t. $X=\operatorname{Proj}\left(S / I_{X}\right)$; one says X is aCM (resp. aG) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein). One sets reg $X:=\operatorname{reg} I_{X}$, which is in turn defined as follows:

Recall: regularity of an ideal

Given a minimal graded free resolution
$\cdots \rightarrow F_{j} \rightarrow \cdots \rightarrow F_{0} \rightarrow I \rightarrow 0$, the Castelnuovo-Mumford
regularity of I is the smallest r such that for each j, all minimal generators of F_{j} have degree $\leq r+j$.

Note for experts: There's another way to define regularity if you like local cohomology, namely

$$
\operatorname{reg}(S / I):=\max \left\{i+j: H_{\mathfrak{m}}^{i}(S / I)_{j} \neq 0\right\} \text { and } \operatorname{reg} I=\operatorname{reg} S / I+1
$$

Example 1. If X is a line (or a hyperplane, or a linear subspace), it has regularity 1.

Example 1. If X is a line (or a hyperplane, or a linear subspace), it has regularity 1 .
Example 2. Moment curves, i.e. curves of type $\left(t, t^{2}, \ldots, t^{d}\right)$, have regularity 2 .

Example 1. If X is a line (or a hyperplane, or a linear subspace), it has regularity 1 .
Example 2. Moment curves, i.e. curves of type $\left(t, t^{2}, \ldots, t^{d}\right)$, have regularity 2 .

Example 3. If a simplicial complex Δ is a triangulated ($d-1$)-sphere, $X=V\left(I_{\Delta}\right)$ is aG of regularity $d+1$.

Example 1. If X is a line (or a hyperplane, or a linear subspace), it has regularity 1 .
Example 2. Moment curves, i.e. curves of type $\left(t, t^{2}, \ldots, t^{d}\right)$, have regularity 2 .

Example 3. If a simplicial complex Δ is a triangulated ($d-1$)-sphere, $X=V\left(I_{\Delta}\right)$ is aG of regularity $d+1$.
Example 4. If $I_{X}=\left(g_{1}, \ldots, g_{s}\right)$ is a complete intersection, then X is aG of regularity $\operatorname{reg} X=\operatorname{deg} g_{1}+\ldots+\operatorname{deg} g_{s}-s+1$.

Recall: A graph is d-regular if every vertex has exactly d neighbors.

Recall: A graph is d-regular if every vertex has exactly d neighbors.

If a graph is d-regular and k-connected, necessarily $k \leq d$.

Recall: A graph is d-regular if every vertex has exactly d neighbors.

If a graph is d-regular and k-connected, necessarily $k \leq d$. (If you kill all d neighbors of a vertex, you disconnect the graph, because now the vertex is isolated.

Recall: A graph is d-regular if every vertex has exactly d neighbors.

If a graph is d-regular and k-connected, necessarily $k \leq d$. (If you kill all d neighbors of a vertex, you disconnect the graph, because now the vertex is isolated. So a d-regular graph is not ($d+1$)-connected.)

Recall: A graph is d-regular if every vertex has exactly d neighbors.

If a graph is d-regular and k-connected, necessarily $k \leq d$. (If you kill all d neighbors of a vertex, you disconnect the graph, because now the vertex is isolated. So a d-regular graph is not ($d+1$)-connected.)

Balinski, Klee (1975)

The dual graph of every $(d-1)$-dimensional triangulated homology sphere (or manifold) is d-regular and d-connected.

Surprisingly, these two notions of regularity agree:

Surprisingly, these two notions of regularity agree:

Theorem (B.-Di Marca-Varbaro, 2016+)

Let X be an arithmetically-Gorenstein arrangement of projective lines. Then the dual graph of X has connectivity $\geq \operatorname{reg} X-1$. If in addition no three lines meet in a common point, then the graph has connectivity $=\operatorname{reg} X-1$, and is (reg $X-1$)-regular.

Surprisingly, these two notions of regularity agree:

Theorem (B.-Di Marca-Varbaro, 2016+)

Let X be an arithmetically-Gorenstein arrangement of projective lines. Then the dual graph of X has connectivity $\geq \operatorname{reg} X-1$. If in addition no three lines meet in a common point, then the graph has connectivity $=\operatorname{reg} X-1$, and is (reg $X-1$)-regular.
(Since reg $S / I_{X}=\operatorname{reg} X-1$, one can equivalently rephrase as "the Castelnuovo-Mumford regularity of S / I_{X} and the regularity of the dual graph of X coincide".)

Surprisingly, these two notions of regularity agree:

Theorem (B.-Di Marca-Varbaro, 2016+)

Let X be an arithmetically-Gorenstein arrangement of projective lines. Then the dual graph of X has connectivity \geq reg $X-1$. If in addition no three lines meet in a common point, then the graph has connectivity $=\operatorname{reg} X-1$, and is (reg $X-1$)-regular.
(Since reg $S / I_{X}=\operatorname{reg} X-1$, one can equivalently rephrase as "the Castelnuovo-Mumford regularity of S / I_{X} and the regularity of the dual graph of X coincide".)
Special case 1: X is the Stanley-Reisner variety of a $(d-1)$-sphere Δ.

Surprisingly, these two notions of regularity agree:

Theorem (B.-Di Marca-Varbaro, 2016+)

Let X be an arithmetically-Gorenstein arrangement of projective lines. Then the dual graph of X has connectivity $\geq \operatorname{reg} X-1$. If in addition no three lines meet in a common point, then the graph has connectivity $=\operatorname{reg} X-1$, and is (reg $X-1$)-regular.
(Since reg $S / I_{X}=\operatorname{reg} X-1$, one can equivalently rephrase as "the Castelnuovo-Mumford regularity of S / I_{X} and the regularity of the dual graph of X coincide".)
Special case 1: X is the Stanley-Reisner variety of a
($d-1$)-sphere Δ. Then reg $X=d+1$,

Surprisingly, these two notions of regularity agree:

Theorem (B.-Di Marca-Varbaro, 2016+)

Let X be an arithmetically-Gorenstein arrangement of projective lines. Then the dual graph of X has connectivity $\geq \operatorname{reg} X-1$. If in addition no three lines meet in a common point, then the graph has connectivity $=\operatorname{reg} X-1$, and is (reg $X-1$)-regular.
(Since reg $S / I_{X}=\operatorname{reg} X-1$, one can equivalently rephrase as "the Castelnuovo-Mumford regularity of S / I_{X} and the regularity of the dual graph of X coincide".)
Special case 1: X is the Stanley-Reisner variety of a $(d-1)$-sphere Δ. Then reg $X=d+1$, so the dual graph of $X(=$ that of $\Delta!$) is d-connected and d-regular.

Surprisingly, these two notions of regularity agree:

Theorem (B.-Di Marca-Varbaro, 2016+)

Let X be an arithmetically-Gorenstein arrangement of projective lines. Then the dual graph of X has connectivity $\geq \operatorname{reg} X-1$. If in addition no three lines meet in a common point, then the graph has connectivity $=\operatorname{reg} X-1$, and is (reg $X-1$)-regular.
(Since reg $S / I_{X}=\operatorname{reg} X-1$, one can equivalently rephrase as "the Castelnuovo-Mumford regularity of S / I_{X} and the regularity of the dual graph of X coincide".)
Special case 1: X is the Stanley-Reisner variety of a $(d-1)$-sphere Δ. Then reg $X=d+1$, so the dual graph of $X(=$ that of $\Delta!$) is d-connected and d-regular. Balinski-Klee!

Surprisingly, these two notions of regularity agree:

Theorem (B.-Di Marca-Varbaro, 2016+)

Let X be an arithmetically-Gorenstein arrangement of projective lines. Then the dual graph of X has connectivity \geq reg $X-1$. If in addition no three lines meet in a common point, then the graph has connectivity $=\operatorname{reg} X-1$, and is (reg $X-1$)-regular.
(Since reg $S / I_{X}=\operatorname{reg} X-1$, one can equivalently rephrase as "the Castelnuovo-Mumford regularity of S / I_{X} and the regularity of the dual graph of X coincide".)
Special case 1: X is the Stanley-Reisner variety of a ($d-1$)-sphere Δ. Then reg $X=d+1$, so the dual graph of $X(=$ that of $\Delta!$) is d-connected and d-regular. Balinski-Klee!

Special case 2: if X is a complete intersection. (reg X is the sum of the degree of the components, minus their number, minus 1.)

Corollary

Let X be an arrangement of lines in \mathbb{P}^{3} that is a complete intersection of two surfaces, of degree a and b, say.

Corollary

Let X be an arrangement of lines in \mathbb{P}^{3} that is a complete intersection of two surfaces, of degree a and b, say. Then each line of the arrangement intersects at least $a+b-2$ of the other lines.

Corollary

Let X be an arrangement of lines in \mathbb{P}^{3} that is a complete intersection of two surfaces, of degree a and b, say. Then each line of the arrangement intersects at least $a+b-2$ of the other lines. No three lines share a point?

Corollary

Let X be an arrangement of lines in \mathbb{P}^{3} that is a complete intersection of two surfaces, of degree a and b, say. Then each line of the arrangement intersects at least $a+b-2$ of the other lines. No three lines share a point?..\Rightarrow exactly $a+b-2$ other lines.

Corollary

Let X be an arrangement of lines in \mathbb{P}^{3} that is a complete intersection of two surfaces, of degree a and b, say. Then each line of the arrangement intersects at least $a+b-2$ of the other lines. No three lines share a point?..\Rightarrow exactly $a+b-2$ other lines.

Greg Egan, The Clebsch cubic surface

Corollary

Let X be an arrangement of lines in \mathbb{P}^{3} that is a complete intersection of two surfaces, of degree a and b, say. Then each line of the arrangement intersects at least $a+b-2$ of the other lines. No three lines share a point?..\Rightarrow exactly $a+b-2$ other lines.

Greg Egan, The Clebsch cubic surface (in which all 27 lines are real, and there are triple points)

Example 1. The 27 lines on a cubic

Corollary

Let X be an arrangement of lines in \mathbb{P}^{3} that is a complete intersection of two surfaces, of degree a and b, say. Then each line of the arrangement intersects at least $a+b-2$ of the other lines. No three lines share a point?..\Rightarrow exactly $a+b-2$ other lines.

Greg Egan, The Clebsch cubic surface (in which all 27 lines are real, and there are triple points)
Example 1. Any smooth cubic surface of \mathbb{P}^{3} has 27 lines on it (if generic, no 3 share a point). The 27 lines are the complete int. of the cubic with a union of 9 planes.

Example 1. The 27 lines on a cubic

Corollary

Let X be an arrangement of lines in \mathbb{P}^{3} that is a complete intersection of two surfaces, of degree a and b, say. Then each line of the arrangement intersects at least $a+b-2$ of the other lines. No three lines share a point?..\Rightarrow exactly $a+b-2$ other lines.

Greg Egan, The Clebsch cubic surface (in which all 27 lines are real, and there are triple points)
Example 1. Any smooth cubic surface of \mathbb{P}^{3} has 27 lines on it (if generic, no 3 share a point). The 27 lines are the complete int. of the cubic with a union of 9 planes. So $a=3, b=9$; each line intersects exactly 10 of the others.

Example 2. Schläfli's double-six

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$.

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5 -regular, with diam $G=3$.

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5 -regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G.

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5 -regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5 -regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

The intersection points of X are 30,

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5 -regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

The intersection points of X are 30 , and the vector space of quartics of \mathbb{P}^{3} has dimension 35 .

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5 -regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

The intersection points of X are 30 , and the vector space of quartics of \mathbb{P}^{3} has dimension 35 . So there is a quartic $Z \subset \mathbb{P}^{3}$ passing through these 30 points.

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5 -regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

The intersection points of X are 30 , and the vector space of quartics of \mathbb{P}^{3} has dimension 35 . So there is a quartic $Z \subset \mathbb{P}^{3}$ passing through these 30 points. This quartic contains at least 5 points per line, so it contains each line!

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5 -regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

The intersection points of X are 30 , and the vector space of quartics of \mathbb{P}^{3} has dimension 35 . So there is a quartic $Z \subset \mathbb{P}^{3}$ passing through these 30 points. This quartic contains at least 5 points per line, so it contains each line! So $X \subset Z$.

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5-regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

The intersection points of X are 30 , and the vector space of quartics of \mathbb{P}^{3} has dimension 35 . So there is a quartic $Z \subset \mathbb{P}^{3}$ passing through these 30 points. This quartic contains at least 5 points per line, so it contains each line! So $X \subset Z$. By picking other 4 points outside of Y and not co-planar, one can also choose Z not containing Y (because $35>30+4$).

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5-regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

The intersection points of X are 30 , and the vector space of quartics of \mathbb{P}^{3} has dimension 35 . So there is a quartic $Z \subset \mathbb{P}^{3}$ passing through these 30 points. This quartic contains at least 5 points per line, so it contains each line! So $X \subset Z$. By picking other 4 points outside of Y and not co-planar, one can also choose Z not containing Y (because $35>30+4$). So $Y \cap Z$ is a complete intersection containing X.

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5-regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

The intersection points of X are 30 , and the vector space of quartics of \mathbb{P}^{3} has dimension 35 . So there is a quartic $Z \subset \mathbb{P}^{3}$ passing through these 30 points. This quartic contains at least 5 points per line, so it contains each line! So $X \subset Z$. By picking other 4 points outside of Y and not co-planar, one can also choose Z not containing Y (because $35>30+4$). So $Y \cap Z$ is a complete intersection containing X. But $3 \cdot 4=12$, so $X=Y \cap Z$.

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ where $\left\{a_{i}, b_{j}\right\}$ is an edge iff $i \neq j$. Then G is 5-regular, with diam $G=3$.
Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ with dual graph G. It consists in 12 of the 27 lines on a smooth cubic $Y \subset \mathbb{P}^{3}$.

The intersection points of X are 30 , and the vector space of quartics of \mathbb{P}^{3} has dimension 35 . So there is a quartic $Z \subset \mathbb{P}^{3}$ passing through these 30 points. This quartic contains at least 5 points per line, so it contains each line! So $X \subset Z$. By picking other 4 points outside of Y and not co-planar, one can also choose Z not containing Y (because $35>30+4$). So $Y \cap Z$ is a complete intersection containing X. But $3 \cdot 4=12$, so $X=Y \cap Z$.

We proved X is a complete intersection, with $a=3$ and $b=4$: as our Corollary claims, every line intersects exactly 5 other lines.

Steal three of the 12 lines in Schläfli's arrangement. Can the remaining 9 lines be a complete intersection?

Steal three of the 12 lines in Schläfli's arrangement. Can the remaining 9 lines be a complete intersection?
A. No, the dual graph is not regular.

Steal three of the 12 lines in Schläfli's arrangement. Can the remaining 9 lines be a complete intersection?
A. No, the dual graph is not regular.

Part III. From Lines to Curves.

What about Gorenstein arrangements of curves?

What about Gorenstein arrangements of curves?

B.-Bolognese-Varbaro, 2015

Let X be an arithmetically-Gorenstein projective curve. Let R be the maximum of the regularities of the irreducible components of X. Then the dual graph of X is $\left\lfloor\frac{\operatorname{reg} X+R-2}{R}\right\rfloor$-connected.

What about Gorenstein arrangements of curves?

B.-Bolognese-Varbaro, 2015

Let X be an arithmetically-Gorenstein projective curve. Let R be the maximum of the regularities of the irreducible components of X. Then the dual graph of X is $\left\lfloor\frac{\operatorname{reg} X+R-2}{R}\right\rfloor$-connected.

Line arrangements are the case $R=1$.

What about Gorenstein arrangements of curves?

B.-Bolognese-Varbaro, 2015

Let X be an arithmetically-Gorenstein projective curve. Let R be the maximum of the regularities of the irreducible components of X. Then the dual graph of X is $\left\lfloor\frac{\operatorname{reg} X+R-2}{R}\right\rfloor$-connected.

Line arrangements are the case $R=1$.
Proof idea: we need to show that removing $k-1$ of the curves, the resulting object A is connected. Being connected can be expressed cohomologically;

What about Gorenstein arrangements of curves?

B.-Bolognese-Varbaro, 2015

Let X be an arithmetically-Gorenstein projective curve. Let R be the maximum of the regularities of the irreducible components of X. Then the dual graph of X is $\left\lfloor\frac{\operatorname{reg} X+R-2}{R}\right\rfloor$-connected.

Line arrangements are the case $R=1$.
Proof idea: we need to show that removing $k-1$ of the curves, the resulting object A is connected. Being connected can be expressed cohomologically; but via liaison theory, the cohomology of A is related to that of its complement $B(A \cup B$ is Gorenstein!).

What about Gorenstein arrangements of curves?

B.-Bolognese-Varbaro, 2015

Let X be an arithmetically-Gorenstein projective curve. Let R be the maximum of the regularities of the irreducible components of X. Then the dual graph of X is $\left\lfloor\frac{\operatorname{reg} X+R-2}{R}\right\rfloor$-connected.

Line arrangements are the case $R=1$.
Proof idea: we need to show that removing $k-1$ of the curves, the resulting object A is connected. Being connected can be expressed cohomologically; but via liaison theory, the cohomology of A is related to that of its complement $B(A \cup B$ is Gorenstein!). By a known cohomological characterization of regularity, it suffices to bound from above the regularity of B.

What about Gorenstein arrangements of curves?

B.-Bolognese-Varbaro, 2015

Let X be an arithmetically-Gorenstein projective curve. Let R be the maximum of the regularities of the irreducible components of X. Then the dual graph of X is $\left\lfloor\frac{\operatorname{reg} X+R-2}{R}\right\rfloor$-connected.

Line arrangements are the case $R=1$.
Proof idea: we need to show that removing $k-1$ of the curves, the resulting object A is connected. Being connected can be expressed cohomologically; but via liaison theory, the cohomology of A is related to that of its complement $B(A \cup B$ is Gorenstein!). By a known cohomological characterization of regularity, it suffices to bound from above the regularity of B. But B consists of exactly $k-1$ curves, each of regularity $\leq R$:

What about Gorenstein arrangements of curves?

B.-Bolognese-Varbaro, 2015

Let X be an arithmetically-Gorenstein projective curve. Let R be the maximum of the regularities of the irreducible components of X. Then the dual graph of X is $\left\lfloor\frac{\operatorname{reg} X+R-2}{R}\right\rfloor$-connected.

Line arrangements are the case $R=1$.
Proof idea: we need to show that removing $k-1$ of the curves, the resulting object A is connected. Being connected can be expressed cohomologically; but via liaison theory, the cohomology of A is related to that of its complement $B(A \cup B$ is Gorenstein!). By a known cohomological characterization of regularity, it suffices to bound from above the regularity of B. But B consists of exactly $k-1$ curves, each of regularity $\leq R$: We prove a bound of the type $(k-1) \cdot R$, by first proving that the regularity of curve arrangements is subadditive (new!).

What about Gorenstein arrangements of curves?

B.-Bolognese-Varbaro, 2015

Let X be an arithmetically-Gorenstein projective curve. Let R be the maximum of the regularities of the irreducible components of X. Then the dual graph of X is $\left\lfloor\frac{\operatorname{reg} X+R-2}{R}\right\rfloor$-connected.

Line arrangements are the case $R=1$.
Proof idea: we need to show that removing $k-1$ of the curves, the resulting object A is connected. Being connected can be expressed cohomologically; but via liaison theory, the cohomology of A is related to that of its complement $B(A \cup B$ is Gorenstein!). By a known cohomological characterization of regularity, it suffices to bound from above the regularity of B. But B consists of exactly $k-1$ curves, each of regularity $\leq R$: We prove a bound of the type $(k-1) \cdot R$, by first proving that the regularity of curve arrangements is subadditive (new!).

Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ?

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Good news! (B.-Bolognese-Varbaro, 2015)

For any connected graph G, one can canonically construct an aCM curve X_{G} with dual graph G, with three "bonus" features:

Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Good news! (B.-Bolognese-Varbaro, 2015)

For any connected graph G, one can canonically construct an aCM curve X_{G} with dual graph G, with three "bonus" features:

- reg $X_{G} \leq 3$

Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Good news! (B.-Bolognese-Varbaro, 2015)

For any connected graph G, one can canonically construct an aCM curve X_{G} with dual graph G, with three "bonus" features:

- reg $X_{G} \leq 3$ (smallest possible, can do 2 only if G a tree).

Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Good news! (B.-Bolognese-Varbaro, 2015)

For any connected graph G, one can canonically construct an aCM curve X_{G} with dual graph G, with three "bonus" features:

- reg $X_{G} \leq 3$ (smallest possible, can do 2 only if G a tree).
- the components of X_{G} have regularity ≤ 2 (smallest possible regularity 1 means "line"), they're all rational normal curves.

Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Good news! (B.-Bolognese-Varbaro, 2015)

For any connected graph G, one can canonically construct an aCM curve X_{G} with dual graph G, with three "bonus" features:

- reg $X_{G} \leq 3$ (smallest possible, can do 2 only if G a tree).
- the components of X_{G} have regularity ≤ 2 (smallest possible regularity 1 means "line"), they're all rational normal curves.
- no three components of X_{G} meet at a same point.

Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Good news! (B.-Bolognese-Varbaro, 2015)

For any connected graph G, one can canonically construct an aCM curve X_{G} with dual graph G, with three "bonus" features:

- reg $X_{G} \leq 3$ (smallest possible, can do 2 only if G a tree).
- the components of X_{G} have regularity ≤ 2 (smallest possible regularity 1 means "line"), they're all rational normal curves.
- no three components of X_{G} meet at a same point.

Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Good news! (B.-Bolognese-Varbaro, 2015)

For any connected graph G, one can canonically construct an aCM curve X_{G} with dual graph G, with three "bonus" features:

- reg $X_{G} \leq 3$ (smallest possible, can do 2 only if G a tree).
- the components of X_{G} have regularity ≤ 2 (smallest possible regularity 1 means "line"), they're all rational normal curves.
- no three components of X_{G} meet at a same point.

The recipe for constructing X_{G} is computationally hard, but it is only a few lines long, and explicit...

Bonus slides

Theorem (Hartshorne, 1962)

If X is an arithmetically Cohen-Macaulay (aCM) curve, the dual graph of X is connected.

Let G be a connected graph. Can we find an aCM curve X with dual graph G ? (Genericity arguments do not work.)

Good news! (B.-Bolognese-Varbaro, 2015)

For any connected graph G, one can canonically construct an aCM curve X_{G} with dual graph G, with three "bonus" features:

- reg $X_{G} \leq 3$ (smallest possible, can do 2 only if G a tree).
- the components of X_{G} have regularity ≤ 2 (smallest possible regularity 1 means "line"), they're all rational normal curves.
- no three components of X_{G} meet at a same point.

The recipe for constructing X_{G} is computationally hard, but it is only a few lines long, and explicit...

Construction

Say G is a graph with s vertices.

Construction

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point.

Construction

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point. ('Generic' works perfectly.)

Construction

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point. ('Generic' works perfectly.)
- Set $I=\bigcap_{\{i, j\} \notin E(G)}\left(\ell_{i}, \ell_{j}\right)$.

Construction

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point. ('Generic' works perfectly.)
- Set $I=\bigcap_{\{i, j\} \notin E(G)}\left(\ell_{i}, \ell_{j}\right)$.
- Let $R[d]$ be the subalgebra of the polynomial ring generated by the degree- d elements of I.

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point. ('Generic' works perfectly.)
- Set $I=\bigcap_{\{i, j\} \notin E(G)}\left(\ell_{i}, \ell_{j}\right)$.
- Let $R[d]$ be the subalgebra of the polynomial ring generated by the degree- d elements of I.
- Set

$$
A[d]=\frac{R[d]}{\left(\ell_{1} \ell_{2} \cdots \ell_{s}\right) \cap R[d]} .
$$

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point. ('Generic' works perfectly.)
- Set $I=\bigcap_{\{i, j\} \notin E(G)}\left(\ell_{i}, \ell_{j}\right)$.
- Let $R[d]$ be the subalgebra of the polynomial ring generated by the degree- d elements of I.
- Set

$$
A[d]=\frac{R[d]}{\left(\ell_{1} \ell_{2} \cdots \ell_{s}\right) \cap R[d]} .
$$

- The dual graph of $A[d]$ is G; maybe $A[d]$ is not $C M$, but this can be fixed taking reg $A[d]$ many Veronese.

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point. ('Generic' works perfectly.)
- Set $I=\bigcap_{\{i, j\} \notin E(G)}\left(\ell_{i}, \ell_{j}\right)$.
- Let $R[d]$ be the subalgebra of the polynomial ring generated by the degree- d elements of I.
- Set

$$
A[d]=\frac{R[d]}{\left(\ell_{1} \ell_{2} \cdots \ell_{s}\right) \cap R[d]} .
$$

- The dual graph of $A[d]$ is G; maybe $A[d]$ is not $C M$, but this can be fixed taking reg $A[d]$ many Veronese.

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point. ('Generic' works perfectly.)
- Set $I=\bigcap_{\{i, j\} \notin E(G)}\left(\ell_{i}, \ell_{j}\right)$.
- Let $R[d]$ be the subalgebra of the polynomial ring generated by the degree- d elements of I.
- Set

$$
A[d]=\frac{R[d]}{\left(\ell_{1} \ell_{2} \cdots \ell_{s}\right) \cap R[d]} .
$$

- The dual graph of $A[d]$ is G; maybe $A[d]$ is not $C M$, but this can be fixed taking reg $A[d]$ many Veronese.
Example: $G=K_{4}$ minus the edge 12. Let us choose $\ell_{1}=x$, $\ell_{2}=y, \ell_{3}=z, \quad \ell_{4}=x+y+z$;

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point. ('Generic' works perfectly.)
- Set $I=\bigcap_{\{i, j\} \notin E(G)}\left(\ell_{i}, \ell_{j}\right)$.
- Let $R[d]$ be the subalgebra of the polynomial ring generated by the degree- d elements of I.
- Set

$$
A[d]=\frac{R[d]}{\left(\ell_{1} \ell_{2} \cdots \ell_{s}\right) \cap R[d]} .
$$

- The dual graph of $A[d]$ is G; maybe $A[d]$ is not $C M$, but this can be fixed taking reg $A[d]$ many Veronese.
Example: $G=K_{4}$ minus the edge 12. Let us choose $\ell_{1}=x$,
$\ell_{2}=y, \ell_{3}=z, \ell_{4}=x+y+z$; so $I=(x, y)$. Then

$$
A[3]=\frac{\mathbb{C}\left[x^{3}, x^{2} y, x^{2} z, x y^{2}, x y z, x z^{2}, y^{3}, y^{2} z, y z^{2}\right]}{(x y z(x+y+z)) .}
$$

Say G is a graph with s vertices.

- Pick s lines in \mathbb{P}^{2}, given by equations $\ell_{i}=0$, so that no three lines have a common point. ('Generic' works perfectly.)
- Set $I=\bigcap_{\{i, j\} \notin E(G)}\left(\ell_{i}, \ell_{j}\right)$.
- Let $R[d]$ be the subalgebra of the polynomial ring generated by the degree- d elements of I.
- Set

$$
A[d]=\frac{R[d]}{\left(\ell_{1} \ell_{2} \cdots \ell_{s}\right) \cap R[d]} .
$$

- The dual graph of $A[d]$ is G; maybe $A[d]$ is not $C M$, but this can be fixed taking reg $A[d]$ many Veronese.
Example: $G=K_{4}$ minus the edge 12. Let us choose $\ell_{1}=x$,
$\ell_{2}=y, \ell_{3}=z, \ell_{4}=x+y+z$; so $I=(x, y)$. Then

$$
A[3]=\frac{\mathbb{C}\left[x^{3}, x^{2} y, x^{2} z, x y^{2}, x y z, x z^{2}, y^{3}, y^{2} z, y z^{2}\right]}{(x y z(x+y+z)) .}
$$

Extra frame: Proof details

Extra frame: Proof details

Regularity can be characterized using Grothendieck duality as follows:

$$
\operatorname{reg}(S / l)=\max \left\{i+j: H_{\mathfrak{m}}^{i}(S / l)_{j} \neq 0\right\}
$$

where $H_{\mathfrak{m}}^{i}$ stands for local cohomology with support in the maximal ideal $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$.
Order of the prime ideals as you wish. Let $I_{B}=\mathfrak{p}_{1} \cap \ldots \mathfrak{p}_{r-1}$ and $I_{A}=\mathfrak{p}_{r} \cap \ldots \cap \mathfrak{p}_{s}$. Want to prove that $G\left(I_{A}\right)$ is connected.

Regularity can be characterized using Grothendieck duality as follows:

$$
\operatorname{reg}(S / I)=\max \left\{i+j: H_{\mathfrak{m}}^{i}(S / I)_{j} \neq 0\right\}
$$

where $H_{\mathfrak{m}}^{i}$ stands for local cohomology with support in the maximal ideal $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$.
Order of the prime ideals as you wish. Let $I_{B}=\mathfrak{p}_{1} \cap \ldots \mathfrak{p}_{r-1}$ and $I_{A}=\mathfrak{p}_{r} \cap \ldots \cap \mathfrak{p}_{s}$. Want to prove that $G\left(I_{A}\right)$ is connected.
(1) C_{A} and C_{B} are geometrically linked by $C=\operatorname{Proj}(S / I)$ which is arit. Gorenstein; so by Migliore's theory, we have a graded isomorphism

$$
H_{\mathfrak{m}}^{1}\left(S / I_{A}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)^{\vee}(2-r)
$$

(2) By Derksen-Sidman, $\operatorname{reg}\left(I_{B}\right) \leq r-1$, so $\operatorname{reg}\left(S / I_{B}\right) \leq r-2$.

Regularity can be characterized using Grothendieck duality as follows:

$$
\operatorname{reg}(S / I)=\max \left\{i+j: H_{\mathfrak{m}}^{i}(S / I)_{j} \neq 0\right\}
$$

where $H_{\mathfrak{m}}^{i}$ stands for local cohomology with support in the maximal ideal $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$.
Order of the prime ideals as you wish. Let $I_{B}=\mathfrak{p}_{1} \cap \ldots \mathfrak{p}_{r-1}$ and $I_{A}=\mathfrak{p}_{r} \cap \ldots \cap \mathfrak{p}_{s}$. Want to prove that $G\left(I_{A}\right)$ is connected.
(1) C_{A} and C_{B} are geometrically linked by $C=\operatorname{Proj}(S / I)$ which is arit. Gorenstein; so by Migliore's theory, we have a graded isomorphism

$$
H_{\mathfrak{m}}^{1}\left(S / I_{A}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)^{\vee}(2-r) .
$$

(2) By Derksen-Sidman, $\operatorname{reg}\left(I_{B}\right) \leq r-1$, so $\operatorname{reg}\left(S / I_{B}\right) \leq r-2$.
(3) By definition of regularity, $\operatorname{reg}\left(S / I_{B}\right) \leq r-2$ implies that $H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)_{r-2}=0$.

Regularity can be characterized using Grothendieck duality as follows:

$$
\operatorname{reg}(S / I)=\max \left\{i+j: H_{\mathfrak{m}}^{i}(S / I)_{j} \neq 0\right\}
$$

where $H_{\mathfrak{m}}^{i}$ stands for local cohomology with support in the maximal ideal $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$.
Order of the prime ideals as you wish. Let $I_{B}=\mathfrak{p}_{1} \cap \ldots \mathfrak{p}_{r-1}$ and $I_{A}=\mathfrak{p}_{r} \cap \ldots \cap \mathfrak{p}_{s}$. Want to prove that $G\left(I_{A}\right)$ is connected.
(1) C_{A} and C_{B} are geometrically linked by $C=\operatorname{Proj}(S / I)$ which is arit. Gorenstein; so by Migliore's theory, we have a graded isomorphism

$$
H_{\mathfrak{m}}^{1}\left(S / I_{A}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)^{\vee}(2-r) .
$$

(2) By Derksen-Sidman, $\operatorname{reg}\left(I_{B}\right) \leq r-1$, so $\operatorname{reg}\left(S / I_{B}\right) \leq r-2$.
(3) By definition of regularity, $\operatorname{reg}\left(S / I_{B}\right) \leq r-2$ implies that $H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)_{r-2}=0$.
(4) So $H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)_{0}=0$. This implies that $H^{0}\left(C_{A}, \mathcal{O}_{C_{A}}\right) \cong \mathbb{K}$, which in turn implies that C_{A} is a connected curve.

