Forbidden minors for projective planarity

Guoli Ding
Louisiana State University

Joint work with Perry Iverson and Kimberly D'Souza

Background

- 1930 Kuratowski:

$$
\text { planar } \Leftrightarrow \text { no }\left\{K_{5}, K_{3,3}\right\} \text {-subdivision }
$$

- 1930^{+}Erdös: what about other surfaces?

For any surface Σ,
let $\mathcal{S}_{\Sigma}=\{$ minimal non-embeddable graphs $\}$.
Note: Σ-embeddable \Leftrightarrow no $\mathcal{S}_{\Sigma^{\Sigma} \text {-subdivision }}$ Is \mathcal{S}_{Σ} finite?

Background

- 1978 Glover-Huneke: $\mathcal{S}_{\mathbb{N}_{1}}$ is finite
- 1980 Archdeacon: $\left|\mathcal{S}_{\mathbb{N}_{1}}\right|=103$
- 1989 Archdeacon-Huneke: $\mathcal{S}_{\mathbb{N}_{k}}$ is finite $(\forall k)$
- 1990 Robertson-Seymour: \mathcal{S}_{Σ} is finite $(\forall \Sigma)$
- 1990 Everyone: what are the graphs in each \mathcal{S}_{Σ} ? is this the right question to ask ?

Remarks on Robertson-Seymour

(1) G contains H

(2) $\forall H \exists H_{1}, H_{2}, \ldots, H_{k}$ such that

$$
H \leq_{m} G \Leftrightarrow H_{i} \leq_{s} G \text { for some } i \text {. }
$$

Remarks on Robertson-Seymour

(3) Robertson-Seymour:

$$
\mathcal{M}_{\Sigma}=\{\text { minor-minimal non-embeddable graphs }\}
$$ is finite, for every Σ.

(4) Consequently, \mathcal{S}_{Σ} is finite, for every Σ.

Since $\left|\mathcal{M}_{\Sigma}\right| \leq\left|\mathcal{S}_{\Sigma}\right|$, we will talk about \mathcal{M}_{Σ}, instead of \mathcal{S}_{Σ}.

Problem. What are the graphs in each \mathcal{M}_{Σ} ?

Known results:

- $\mathcal{M}_{\mathbb{S}_{0}}=\left\{K_{5}, K_{3,3}\right\}$
- $\left|\mathcal{M}_{\mathbb{N}_{1}}\right|=35$
- $\left|\mathcal{M}_{\mathbb{S}_{1}}\right| \geq 16,629$

Not all graphs in \mathcal{M}_{Σ} are equally important!

- some are of low connectivity - a major defect!
- some are "accident"

Theorem (Archdeacon)

A graph is projective planar iff it does not contain any of the following 35 as a minor:
(0) any 0 -sum of two graphs in $\left\{K_{5}, K_{3,3}\right\}$
(1) any 1 -sum of two graphs in $\left\{K_{5}, K_{3,3}\right\}$
(2) any 2 -sum of two graphs in $\left\{K_{5}, K_{3,3}\right\}$
(3) another 23 3-connected graphs

Let $\mathcal{A}=\mathcal{M}_{\mathbb{N}_{1}}$ be the set of 35 Archdeacon graphs.

Proposition 1. Let \mathcal{A}_{1} be the 32 connected graphs in \mathcal{A}. Then a connected graph G is projective iff G does not contain any graph in \mathcal{A}_{1} as a minor.

Proof. Let G be connected with $G \succeq H$.

Proposition 2. Let \mathcal{A}_{2} be the 29 2-connected graphs in \mathcal{A}. Then a 2 -connected graph G is projective iff G does not contain any graph in \mathcal{A}_{2} as a minor.

Proof. Let G be 2-connected with $G \succeq H$.

Proposition 3. Let \mathcal{A}_{3} be the 23 3-connected graphs in \mathcal{A}. Then a 3 -connected graph G is projective iff G does not contain any graph in \mathcal{A}_{3} as a minor.

Proof. Let G be 3-connected with $G \succeq H$.

Suppose:

- H is a minor of G, and
- a k-separation of H does not extend to G

H

H in G

Suppose:

- H is a minor of G, and
- a k-separation of H does not extend to G

H

$H+$ augmenting path

Suppose:

- H is a minor of G, and
- a k-separation of H does not extend to G

H

H^{+}

Suppose:

- H is a minor of G, and
- a k-separation of H does not extend to G

H

H^{+}

Lemma. G contains H^{+}.

Suppose:

- H is a minor of G, and
- a k-separation of H does not extend to G

H

$$
H^{+}
$$

Lemma. G contains H^{+}.

This Lemma gives us a short proof for Proposition 3: 3 -connected \mathcal{A}_{3}-free graphs are projective

Proof. We need only prove that every 3-connected non-projective graph contains a graph in \mathcal{A}_{3} as a minor. By Theorem 2 , we may assume that G has a graph $A \in \mathcal{A}_{2}$ as a minor, where A is one of the six graphs in \mathcal{A}_{2} of connectivity two, which are listed in Figure 2.1. Notice that each of these graphs is a 2-sum of two graphs among $\left\{K_{3,3}, K_{5}\right\}$. By Theorem 2, G contains a twist J of the 2 -separation of A as a minor where J is constructed from rooted graphs $\left(J_{i}, R_{i}\right)(i=1,2)$ that are among the graphs shown in Figure 1, which we call $K_{3,3}^{N 1}, K_{3,3}^{N 2}, K_{3,3}^{N 3}, K_{3,3}^{E 1}, K_{3,3}^{E 2}, K_{5}^{1}$, and K_{5}^{2}, respectively. Let M be the matching used to construct J from J_{1} and J_{2}.

Figure 1: Seven possibilities for $\left(J_{i}, R_{i}\right): K_{3,3}^{N 1}, K_{3,3}^{N 2}, K_{3,3}^{N 3}, K_{3,3}^{E 1}, K_{3,3}^{E 2}, K_{5}^{1}$, and K_{5}^{2}
First assume $\left(J_{1}, R_{1}\right)$ is one of $K_{3,3}^{N 1}, K_{3,3}^{N 2}$, or $K_{3,3}^{N 3}$, and contract the entire matching M to obtain J^{\prime}. Notice that $K_{3,3}^{N 3}$ can be contracted to $K_{3,3}^{N 2}, K_{3,3}^{E 2}$ can be contracted to $K_{3,3}^{E 1}$, and K_{5}^{2} can be contracted to K_{5}^{1}. So we may assume $\left(J_{1}, R_{1}\right)$ is either $K_{3,3}^{N 1}$ or $K_{3,3}^{N 2}$ and $\left(J_{2}, R_{2}\right)$ is one of $K_{3,3}^{N 1}, K_{3,3}^{N 2}, K_{3,3}^{E 1}$, or K_{5}^{1}. Now notice that $K_{2,3}$ rooted at the three mutually non-adjacent vertices can be obtained by contracting and deleting edges of $K_{3,3}^{N 2}$, $K_{3,3}^{E 1}$, or K_{5}^{1}. Therefore if $\left(J_{1}, R_{1}\right)$ or $\left(J_{2}, R_{2}\right)$ is $K_{3,3}^{N 1}$, then J^{\prime} contains $K_{3,5}=E_{3} \in \mathcal{A}_{3}$ as a minor. Now we may assume that $\left(J_{1}, R_{1}\right)$ is $K_{3,3}^{N 2}$ and $\left(J_{2}, R_{2}\right)$ is $K_{3,3}^{N 2}, K_{3,3}^{E 1}$, or K_{5}^{1}. If $\left(J_{2}, R_{2}\right)$ is $K_{3,3}^{N 2}$, delete an edge from it to obtain $K_{3,3}^{E 1}$; if $\left(J_{2}, R_{2}\right)$ is $K_{3,3}^{E 1}$, J^{\prime} has either $E_{5} \in \mathcal{A}_{3}$ or $F_{1} \in \mathcal{A}_{3}$ as a subgraph; and if $\left(J_{2}, R_{2}\right)$ is K_{5}^{1}, J^{\prime} has $D_{3} \in \mathcal{A}_{3}$ as a subgraph.

Figure 2: Six graphs in $\mathcal{A}_{3}: B_{1}, C_{7}, D_{3}, E_{3}, E_{5}$, and F_{1}
Now $\left(J_{i}, R_{i}\right)$ must be among $K_{3,3}^{E 1}, K_{3,3}^{E 2}, K_{5}^{1}$, and K_{5}^{2} for $i=1,2$. Suppose $\left(J_{1}, R_{1}\right)$ is $K_{3,3}^{E 2}$ or K_{5}^{2}. We contract the entire matching M to obtain J^{\prime}. If $\left(J_{2}, R_{2}\right)$ is $K_{3,3}^{E 2}$ or K_{5}^{2}, contract it to $K_{3,3}^{E 1}$ or K_{5}^{1}, respectively. In case $\left(J_{1}, R_{1}\right)$ is $K_{3,3}^{E 2}$, if $\left(J_{2}, R_{2}\right)$ is $K_{3,3}^{E 1}$, J^{\prime} has F_{1} as a minor, and if $\left(J_{2}, R_{2}\right)$ is K_{5}^{1}, J^{\prime} has D_{3} as a minor. In case $\left(J_{1}, R_{1}\right)$ is K_{5}^{2}, if $\left(J_{2}, R_{2}\right)$ is $K_{3,3}^{E 1}, J^{\prime}$ has D_{3} or F_{1} as a minor, if $\left(J_{2}, R_{2}\right)$ is K_{5}^{1}, J^{\prime} has $C_{7} \in \mathcal{A}_{3}$ as a subgraph.
So $\left(J_{i}, R_{i}\right)$ is either $K_{3,3}^{E 1}$ or K_{5}^{1} for $i=1,2$. In this case, we may no longer contract the entire matching M since this may result in a projective graph. Suppose $\left\{v_{1}, v_{2}\right\}$ is the 2-cut of A, then contract any edge of M incident to some vertex with label either v_{1} or v_{2}. Then if $\left(J_{1}, R_{1}\right)$ and $\left(J_{2}, R_{2}\right)$ are both $K_{3,3}^{E 1}, J^{\prime}$ has either E_{5} or F_{1} as a subgraph. If $\left(J_{1}, R_{1}\right)$ is $K_{3,3}^{E 1}$ and $\left(J_{2}, R_{2}\right)$ is K_{5}^{1}, J^{\prime} has D_{3} as a subgraph. Finally if $\left(J_{1}, R_{1}\right)$ and $\left(J_{2}, R_{2}\right)$ are both K_{5}^{1}, J^{\prime} has either B_{1} or C_{7} as a subgraph.

QED

Theorem.

(1) A connected graph is projective iff it is \mathcal{A}_{1}-free.
(2) A 2-connected graph is projective iff it is \mathcal{A}_{2}-free.
(3) A 3-connected graph is projective iff it is \mathcal{A}_{3}-free.
(4) An internally 4 -connected graph is projective iff

- our first main result it is \mathcal{A}_{4}^{*}-free.
proved by Robertson, Seymour, and Thomas

Proof of (4).

$$
\mathcal{A}_{3}=\mathcal{A}_{4} \cup\left\{B_{1}, C_{7}, D_{3}, D_{9}, D_{12}\right.
$$

$$
\left.E_{3}, E_{5}, E_{11}, E_{19}, E_{27}, F_{1}, G_{1}\right\}
$$

12 graphs
\downarrow (Lemma)
\mathcal{A}_{4}^{*}
which are

Problem. Removing "accident" graphs from \mathcal{M}_{Σ}

Theorem (Hall) Except for K_{5}, a 3-connected graph is non-planar iff it contains $K_{3,3}$.
K_{5} is an accident!

Objective. Find $\mathcal{B} \subseteq \mathcal{A}_{3}$ such that:
With finitely many exceptions, a 3 -connected graph is non-projective iff it contains a graph in \mathcal{B}

Theorem. There are precisely two minimal sets \mathcal{B} :

- $\mathcal{A}_{3}-\left\{A_{2}, C_{4}, C_{7}, D_{17}\right\}$ (21 exceptions)
- $\mathcal{A}_{3}-\left\{B_{7}, C_{7}, D_{17}\right\}$ (21 exceptions)

Proof. Using Splitter Theorem

Splitter Theorem. (Seymour) If

- G and H are 3-connected
- $K_{4} \neq H<G \neq W_{n}$ then $G \geq H^{\prime} \in\{H$-adds, H-splits $\}$.

Hall Theorem. If $G \neq K_{5}$ is 3-connected nonplanar then $G \geq K_{3,3}$.
Proof. Nonplanar $\Rightarrow G \geq K_{5}$ or $K_{3,3}$

$$
\begin{aligned}
& \Rightarrow G \geq K_{5} \\
& \Rightarrow G \geq K_{5} \text {-split } \geq K_{3,3} .
\end{aligned}
$$

Theorem. There are precisely two minimal sets \mathcal{B} :

- $\mathcal{A}_{3}-\left\{A_{2}, C_{4}, C_{7}, D_{17}\right\}$ (21 exceptions)
- $\mathcal{A}_{3}-\left\{B_{7}, C_{7}, D_{17}\right\}$ (21 exceptions)

Proof. Using Splitter Theorem

Objective. Find $\mathcal{B} \subseteq \mathcal{A}_{3}$ such that:
With finitely many exceptions, an internally 4 -connected graph is
non-projective iff it contains a graph in \mathcal{B}

Theorem (Our second main result). The following

$$
\left\{D_{3}, E_{5}, E_{20}, E_{22}, F_{1}, F_{4}\right\}
$$

is a minimum set \mathcal{B}.
(The largest exception has 14 vertices and 31 edges.)

A different formulation: An i-4-connected graph G with ≥ 15 vertices is projective iff G contains none of the following:

$D_{3}, E_{5}, E_{20}, E_{22}, \quad F_{1}, F_{4}$

Proof.

Splitter Theorem.

$$
\begin{aligned}
& \text { If } G \geq H \text {, both i-4-c, and }|V(G)|>|V(H)|, \\
& \text { then } G \geq H^{\prime}, \text { where } H^{\prime} \ldots
\end{aligned}
$$

Outer-Projective graphs.

A graph G is outer-projective if G admits a projective drawing such that there is a face incident with all vertices.

Observation. G is outer-projective iff \hat{G} is projective.

Corollary. For outer-projective graphs,
the set \mathcal{F} of forbidden minors consists of precisely minimal graphs in $\{G-v: G \in \mathcal{A}, v \in V(G)\}$

Archdeacon, Hartsfield, Little, Mohar (1998): $|\mathcal{F}|=32$

Theorem.

(1) A connected G is OP iff G is \mathcal{F}_{1}-free; $\quad\left|\mathcal{F}_{1}\right|=29$
(2) A 2-connected G is OP iff G is \mathcal{F}_{2}-free; $\quad\left|\mathcal{F}_{2}\right|=23$
(3) A 3-connected G is OP iff G is \mathcal{F}_{3}^{*}-free; $\quad\left|\mathcal{F}_{3}^{*}\right|=9$
(4) An i-4-connected G with $|G| \geq 9$ is OP iff
G is

