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Background

e 1930 Kuratowski:
planar < no { K35, K3 3}-subdivision

e 1930t Erdos: what about other surfaces?

For any surface 22,
let S = {minimal non-embeddable graphs}.
Note: X-embeddable < no Sy-subdivision

[s Sy finite?



Background

e 1978 Glover-Huneke: SN1 is finite
e 1980 Archdeacon: ]SNl\ = 103
e 1989 Archdeacon-Huneke: SNk: is finite (Vk)

e 1990 Robertson-Seymour: S, is finite (V)

e 1990 Everyone: what are the graphs in each S 7
is this the right question to ask 7



Remarks on Robertson-Seymour

(1) G contains H

as a subdivision VS as a minor
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(2) VH dHq, Ho, ..., H;. such that
H<, G & H; <G for some 1.



Remarks on Robertson-Seymour

(3) Robertson-Seymour:
M. = {minor-minimal non-embeddable graphs}
is finite, for every X..

(4) Consequently, Sy is finite, for every 3.
Since | Myx| < |Sx|, we will talk about My, instead of Sy..

Problem. What are the graphs in each M.”



Known results:
e My = {Ks5 K33}
. \MNl\ = 35
o \/\/181] > 16, 629

Not all graphs in M, are equally important!

e some are of low connectivity — a major defect!
e some are “accident”



Theorem (Archdeacon)

A graph is projective planar iff it does not contain
any of the following 35 as a minor:

(0) any O-sum of two graphs in { K5, K33}
(1) any l-sum of two graphs in { K5, K33}
(2) any 2-sum of two graphs in { K5, K33}
(3)

3) another 23 3-connected graphs

Let A = ./\/lNl be the set of 35 Archdeacon graphs.




Proposition 1. Let A be the 32 connected graphs in
A. Then a connected graph G is projective iff G does
not contain any graph in Ay as a minor.

Proof. Let G be connected with G >~ H.
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Proposition 2. Let A9 be the 29 2-connected graphs in
A. Then a 2-connected graph G is projective iff G does
not contain any graph in Ao as a minor.

Proof. Let G be 2-connected with G > H.



Proposition 3. Let Aj be the 23 3-connected graphs in
A. Then a 3-connected graph G is projective iff G does
not contain any graph in A3 as a minor.

Proof. Let GG be 3-connected with G = H.




Suppose:

e H is a minor of (G, and
e a k-separation of H does not extend to G
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e H is a minor of (G, and
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Suppose:

e H is a minor of (G, and
e a k-separation of H does not extend to G
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Lemma. G contains H ™.



Suppose:

e H is a minor of (G, and
e a k-separation of H does not extend to G

—

H HT
Lemma. G contains HT.

This Lemma gives us a short proot for Proposition 3:

3-connected Ajs-free graphs are projective



Proof. We need only prove that every 3-connected non-projective graph contains a graph
in Aj as a minor. By Theorem 2, we may assume that G has a graph A € A, as a minor,
where A is one of the six graphs in A of connectivity two, which are listed in Figure 2.1.
Notice that each of these graphs is a 2-sum of two graphs among { K33, K5}. By Theorem
2, G contains a twist J of the 2-separation of A as a minor where .J is constructed from
rooted graphs (J;, R;) (i = 1,2) that are among the graphs shown in Figure 1, which we
call K39, K32, KI%, KF3, K2, K, and K2, respectively. Let M be the matching used
to construct J from Jy and Js.
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Figure 1: Seven possibilities for (.J;, R;): K34, Ki%, K%, K3, K2, K}, and K?

First assume (Ji, R;) is one of K%l ngf, or Kévg, and contract the entire matching M
to obtain J’. Notice that K2J can be contracted to ngf KE2 can be contracted to
KgEg, and K2 can be contracted to K2. So we may assume (J;, R;) is either Ké\g or K2
and (J, Ry) is one of K34, K2, KF1 or K}. Now notice that Ky rooted at the three
mutually non-adjacent vertices can be obtained by contracting and deleting edges of K32,
KEL or K}. Therefore if (Jy, Ry) or (Jo, Ry) is KN}, then J' contains K35 = B3 € As
as a minor. Now we may assume that (J;, R, ) is I&%Vrf and (Jy, Ry) is K33, K73, or K.
If (Jo, Ry) is K2'2, delete an edge from it to obtain 1&33; if (Ja, Ry) is K¥73, J' has cither

E5; € A; or Fy € Aj as a subgraph; and if (Jy, Rs) is K3, J' has D3 € Ajz as a subgraph.
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Figure 2: Six graphs in Ajs: By, C7, D3, E3, E5, and F}

Now (J;, R;) must be among K3, K33, K}, and K2 for i = 1,2. Suppose (Ji, Ry) is K§3
or K2. We contract the entire matching M to obtain J'. If (Jz, Ry) is KSEf or K2, Contract
it to K‘ or K}, respectively. In case (Jy, R1) is K§3, if (Jp, Ry) is K§3, J' has Fyasa
minor, and if (Jo, Ry) is K2, J' has D3 as a minor. In case (Ji, Ry) is K2, if (Jo, Re) is
K33, J' has D3 or Fy as a minor, if (Jy, Rp) is K3, J' has C7 € Aj as a subgraph.

So (J;, R;) is either KP4 or K} for i = 1,2. In this case, we may no longer contract the
entire matching M since this may result in a projective graph. Suppose {v1,vs} is the
2-cut of A, then contract any edge of M incident to some vertex with label either v; or
vy. Then if (Ji, Ry) and (Jo, Ry) are both KEL J" has either Es or Fy as a subgraph.
If (i, Ry) is K¥3 and (Jo, Ry) is K%, J' has Dj as a subgraph. Finally if (J;, R;) and
(J2, R2) are both K}, J' has either By or C7 as a subgraph. QED
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Theorem.

(1) A connected graph is projective ift it is A;-free.
(2) A 2-connected graph is projective iff it is Ag-free.
~ (3) A 3-connected graph is projective iff it is As-free.
(

4) An internally 4-connected graph is projective iff
it is Aj-free.

our first main result

proved by Robertson, Seymour, and Thomas




Proof of (4).

Az = Ay U {By1,C7, D3, Dy, D19
s, Es, Eqy, Ehg, Eo7, F1, G}

\

12 g}raphs

ﬂ (Lemma)
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which are . . . . . .
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Problem. Removing “accident” graphs from M.

Theorem (Hall) Except for K5, a 3-connected graph
is non-planar iff it contains K3 3.

K+ is an accident!

Objective. Find B C A3 such that:

With finitely many exceptions, a 3-connected graph
is non-projective iff it contains a graph in B




Theorem. There are precisely two minimal sets B:

o A3 —{Ay, Cy,C7 D17} (21 exceptions)
o A3 —{ By, C7 Di7} (21 exceptions)

Proof. Using Splitter Theorem . . . .



Splitter Theorem. (Seymour) If
e ( and H are 3-connected
o y#H<G#W,

then G > H' € {H-adds, H-splits}.

add split

Hall Theorem. If G # Kj is 3-connected nonplanar then G > K3 3.

Proof. Nonplanar = G > Ks5 or K33
= G > Kj
= G > Kx-split > K3 3. []



Theorem. There are precisely two minimal sets B:

o A3 —{Ay, Cy,C7 D17} (21 exceptions)
o A3 —{ By, C7 Di7} (21 exceptions)

Proof. Using Splitter Theorem . . . .



Objective. Find B C A3 such that:

With finitely many exceptions,
an internally 4-connected graph is
non-projective iff it contains a graph in B

Theorem (Our second main result). The following
{Ds, E5, Ex, E2, F1, Fi}

is a minimum set B.
(The largest exception has 14 vertices and 31 edges.)



A different formulation: An i-4-connected graph G with > 15

vertices is projective iff G' contains none of the following:

D3, FEs5, FEoy, FEoo, Fi, Fy




Prootf.

Splitter Theorem.

If G > H, both i-4-c, and |V (G)| > |V (H)|,
then G > H' where H' ......



Outer-Projective graphs.

A graph G is outer-projective if G admits a projective
drawing such that there is a face incident with all vertices.

Observation. G is outer-projective iff G is projective.

Corollary. For outer-projective graphs,
the set F of forbidden minors consists of precisely

minimal graphs in {G —v: G € A,v € V(G)}

Archdeacon, Hartsfield, Little, Mohar (1998): |F| = 32



Theorem.

(1) A connected G is OP iff G is Fj-free; | F1| = 29
(2) A 2-connected G is OP iff G is Fo-free; | Fo| = 23
(3) A 3-connected G is OP ift G is F3-free; | F5| =9
(4) An i-4-connected G with |G| > 9 is OP iff

G s ~free.




