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Background

• 1930 Kuratowski:
planar ⇔ no {K5,K3,3}-subdivision

• 1930+ Erdös: what about other surfaces?

For any surface Σ,
let SΣ = {minimal non-embeddable graphs}.
Note: Σ-embeddable ⇔ no SΣ-subdivision

Is SΣ finite?



Background

• 1978 Glover-Huneke: S
N1

is finite

• 1980 Archdeacon: |S
N1
| = 103

• 1989 Archdeacon-Huneke: S
Nk

is finite (∀k)

• 1990 Robertson-Seymour: SΣ is finite (∀Σ)

• 1990 Everyone: what are the graphs in each SΣ ?
is this the right question to ask ?



Remarks on Robertson-Seymour

(1) G contains H

as a subdivision vs as a minor

↓ ↓

H

(2) ∀H ∃H1, H2, ..., Hk such that
H ≤m G ⇔ Hi ≤s G for some i.



Remarks on Robertson-Seymour

(3) Robertson-Seymour:
MΣ = {minor-minimal non-embeddable graphs}

is finite, for every Σ.

(4) Consequently, SΣ is finite, for every Σ.

Since |MΣ| ≤ |SΣ|, we will talk about MΣ, instead of SΣ.

Problem. What are the graphs in each MΣ?



Known results:

• M
S0

= {K5,K3,3}

• |M
N1
| = 35

• |M
S1
| ≥ 16, 629

Not all graphs in MΣ are equally important!

• some are of low connectivity – a major defect!
• some are “accident”



Theorem (Archdeacon)

A graph is projective planar iff it does not contain
any of the following 35 as a minor:

(0) any 0-sum of two graphs in {K5,K3,3}

(1) any 1-sum of two graphs in {K5,K3,3}

(2) any 2-sum of two graphs in {K5,K3,3}

(3) another 23 3-connected graphs

Let A = M
N1

be the set of 35 Archdeacon graphs.



Proposition 1. Let A1 be the 32 connected graphs in
A. Then a connected graph G is projective iff G does
not contain any graph in A1 as a minor.

Proof. Let G be connected with G � H .



Proposition 2. Let A2 be the 29 2-connected graphs in
A. Then a 2-connected graph G is projective iff G does
not contain any graph in A2 as a minor.

Proof. Let G be 2-connected with G � H .

or or or



Proposition 3. Let A3 be the 23 3-connected graphs in
A. Then a 3-connected graph G is projective iff G does
not contain any graph in A3 as a minor.

Proof. Let G be 3-connected with G � H .



Suppose:

• H is a minor of G, and
• a k-separation of H does not extend to G

H H in G



Suppose:

• H is a minor of G, and
• a k-separation of H does not extend to G

H H+ augmenting path



Suppose:

• H is a minor of G, and
• a k-separation of H does not extend to G

H H+



Suppose:

• H is a minor of G, and
• a k-separation of H does not extend to G

H H+

Lemma. G contains H+.



Suppose:

• H is a minor of G, and
• a k-separation of H does not extend to G

H H+

Lemma. G contains H+.

This Lemma gives us a short proof for Proposition 3:
3-connected A3-free graphs are projective



Proof. We need only prove that every 3-connected non-projective graph contains a graph
in A3 as a minor. By Theorem 2, we may assume that G has a graph A ∈ A2 as a minor,
where A is one of the six graphs in A2 of connectivity two, which are listed in Figure 2.1.
Notice that each of these graphs is a 2-sum of two graphs among {K3,3, K5}. By Theorem
2, G contains a twist J of the 2-separation of A as a minor where J is constructed from
rooted graphs (Ji, Ri) (i = 1, 2) that are among the graphs shown in Figure 1, which we
call KN1

3,3 , K
N2

3,3 , K
N3

3,3 , K
E1

3,3 , K
E2

3,3 , K
1

5
, and K2

5
, respectively. Let M be the matching used

to construct J from J1 and J2.

Figure 1: Seven possibilities for (Ji, Ri): K
N1

3,3 , K
N2

3,3 , K
N3

3,3 , K
E1

3,3 , K
E2

3,3 , K
1

5
, and K2

5

First assume (J1, R1) is one of KN1

3,3 , K
N2

3,3 , or K
N3

3,3 , and contract the entire matching M

to obtain J ′. Notice that KN3

3,3 can be contracted to KN2

3,3 , K
E2

3,3 can be contracted to
KE1

3,3 , and K2

5
can be contracted to K1

5
. So we may assume (J1, R1) is either K

N1

3,3 or KN2

3,3

and (J2, R2) is one of KN1

3,3 , K
N2

3,3 , K
E1

3,3 , or K
1

5
. Now notice that K2,3 rooted at the three

mutually non-adjacent vertices can be obtained by contracting and deleting edges of KN2

3,3 ,
KE1

3,3 , or K1

5
. Therefore if (J1, R1) or (J2, R2) is KN1

3,3 , then J ′ contains K3,5 = E3 ∈ A3

as a minor. Now we may assume that (J1, R1) is K
N2

3,3 and (J2, R2) is K
N2

3,3 , K
E1

3,3 , or K
1

5
.

If (J2, R2) is K
N2

3,3 , delete an edge from it to obtain KE1

3,3 ; if (J2, R2) is K
E1

3,3 , J
′ has either

E5 ∈ A3 or F1 ∈ A3 as a subgraph; and if (J2, R2) is K
1

5
, J ′ has D3 ∈ A3 as a subgraph.

Figure 2: Six graphs in A3: B1, C7, D3, E3, E5, and F1

Now (Ji, Ri) must be among KE1

3,3 , K
E2

3,3 , K
1

5
, and K2

5
for i = 1, 2. Suppose (J1, R1) is K

E2

3,3

or K2

5
. We contract the entire matching M to obtain J ′. If (J2, R2) is K

E2

3,3 or K2

5
, contract

it to KE1

3,3 or K1

5
, respectively. In case (J1, R1) is K

E2

3,3 , if (J2, R2) is K
E1

3,3 , J
′ has F1 as a

minor, and if (J2, R2) is K1

5
, J ′ has D3 as a minor. In case (J1, R1) is K2

5
, if (J2, R2) is

KE1

3,3 , J
′ has D3 or F1 as a minor, if (J2, R2) is K

1

5
, J ′ has C7 ∈ A3 as a subgraph.

So (Ji, Ri) is either K
E1

3,3 or K1

5
for i = 1, 2. In this case, we may no longer contract the

entire matching M since this may result in a projective graph. Suppose {v1, v2} is the
2-cut of A, then contract any edge of M incident to some vertex with label either v1 or
v2. Then if (J1, R1) and (J2, R2) are both KE1

3,3 , J
′ has either E5 or F1 as a subgraph.

If (J1, R1) is KE1

3,3 and (J2, R2) is K1

5
, J ′ has D3 as a subgraph. Finally if (J1, R1) and

(J2, R2) are both K1

5
, J ′ has either B1 or C7 as a subgraph. QED



Theorem.

(1) A connected graph is projective iff it is A1-free.

(2) A 2-connected graph is projective iff it is A2-free.

(3) A 3-connected graph is projective iff it is A3-free.

(4) An internally 4-connected graph is projective iff
it is A∗

4-free.✻

our first main result

✲

proved by Robertson, Seymour, and Thomas



Proof of (4).

A3 = A4 ∪ {B1, C7, D3, D9, D12
E3, E5, E11, E19, E27, F1, G1}

︸ ︷︷ ︸

12 graphs

w
w
� (Lemma)

A∗
4

which are . . . . . .
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Problem. Removing “accident” graphs from MΣ

Theorem (Hall) Except for K5, a 3-connected graph
is non-planar iff it contains K3,3.

K5 is an accident!

Objective. Find B ⊆ A3 such that:

With finitely many exceptions, a 3-connected graph
is non-projective iff it contains a graph in B



Theorem. There are precisely two minimal sets B:

• A3 − {A2, C4, C7, D17} (21 exceptions)
• A3 − { B7, C7, D17} (21 exceptions)

Proof. Using Splitter Theorem . . . .



Splitter Theorem. (Seymour) If
• G and H are 3-connected
• K4 6= H < G 6= Wn

then G ≥ H ′ ∈ {H-adds, H-splits}.

H
add split

H H

Hall Theorem. If G 6=K5 is 3-connected nonplanar then G≥K3,3.

Proof. Nonplanar ⇒ G ≥ K5 or K3,3
⇒ G ≥ K5
⇒ G ≥ K5-split ≥ K3,3. �



Theorem. There are precisely two minimal sets B:

• A3 − {A2, C4, C7, D17} (21 exceptions)
• A3 − { B7, C7, D17} (21 exceptions)

Proof. Using Splitter Theorem . . . .



Objective. Find B ⊆ A3 such that:

With finitely many exceptions,
an internally 4-connected graph is

non-projective iff it contains a graph in B

Theorem (Our second main result). The following

{D3, E5, E20, E22, F1, F4}

is a minimum set B.
(The largest exception has 14 vertices and 31 edges.)



A different formulation: An i-4-connected graph G with ≥ 15

vertices is projective iff G contains none of the following:

D3, E5, E20, E22, F1, F4



Proof.

Splitter Theorem.

If G ≥ H , both i-4-c, and |V (G)| > |V (H)|,
then G ≥ H ′, where H ′ ......



Outer-Projective graphs.

A graph G is outer-projective if G admits a projective
drawing such that there is a face incident with all vertices.

Observation. G is outer-projective iff Ĝ is projective.

Corollary. For outer-projective graphs,
the set F of forbidden minors consists of precisely

minimal graphs in {G− v : G ∈ A, v ∈ V (G)}

Archdeacon, Hartsfield, Little, Mohar (1998): |F| = 32



Theorem.

(1) A connected G is OP iff G is F1-free; |F1| = 29

(2) A 2-connected G is OP iff G is F2-free; |F2| = 23

(3) A 3-connected G is OP iff G is F∗
3 -free; |F∗

3 | = 9

(4) An i-4-connected G with |G| ≥ 9 is OP iff

G is -free.


