Forbidden minors for projective planarity

Guoli Ding Louisiana State University

Joint work with Perry Iverson and Kimberly D'Souza

CombinaTexas, May 7, 2016

Background

• 1930 Kuratowski:

planar \Leftrightarrow no $\{K_5, K_{3,3}\}$ -subdivision

• 1930⁺ Erdös: what about other surfaces? For any surface Σ , let $S_{\Sigma} = \{\text{minimal non-embeddable graphs}\}$. Note: Σ -embeddable \Leftrightarrow no S_{Σ} -subdivision Is S_{Σ} finite?

Background

- 1978 Glover-Huneke: $\mathcal{S}_{\mathbb{N}_1}$ is finite
- 1980 Archdeacon: $|\mathcal{S}_{\mathbb{N}_1}| = 103$
- 1989 Archdeacon-Huneke: $\mathcal{S}_{\mathbb{N}_k}$ is finite $(\forall k)$
- 1990 Robertson-Seymour: S_{Σ} is finite $(\forall \Sigma)$
- 1990 Everyone: what are the graphs in each S_{Σ} ? is this the right question to ask?

Remarks on Robertson-Seymour

(2) $\forall H \exists H_1, H_2, ..., H_k$ such that $H \leq_m G \iff H_i \leq_s G$ for some *i*.

Remarks on Robertson-Seymour

(3) Robertson-Seymour: $\mathcal{M}_{\Sigma} = \{ \text{minor-minimal non-embeddable graphs} \}$ is finite, for every Σ .

(4) Consequently, S_{Σ} is finite, for every Σ .

Since $|\mathcal{M}_{\Sigma}| \leq |\mathcal{S}_{\Sigma}|$, we will talk about \mathcal{M}_{Σ} , instead of \mathcal{S}_{Σ} .

Problem. What are the graphs in each \mathcal{M}_{Σ} ?

Known results:

•
$$\mathcal{M}_{\mathbb{S}_0} = \{K_5, K_{3,3}\}$$

•
$$|\mathcal{M}_{\mathbb{N}_1}| = 35$$

• $|\mathcal{M}_{\mathbb{S}_1}| \ge 16,629$

Not all graphs in \mathcal{M}_{Σ} are equally important!

- some are of low connectivity a major defect!
- some are "accident"

Theorem (Archdeacon)

A graph is projective planar iff it does not contain any of the following 35 as a minor:

(0) any 0-sum of two graphs in $\{K_5, K_{3,3}\}$ (1) any 1-sum of two graphs in $\{K_5, K_{3,3}\}$ (2) any 2-sum of two graphs in $\{K_5, K_{3,3}\}$ (3) another 23 3-connected graphs

Let $\mathcal{A} = \mathcal{M}_{\mathbb{N}_1}$ be the set of 35 Archdeacon graphs.

Proposition 1. Let \mathcal{A}_1 be the 32 connected graphs in \mathcal{A} . Then a connected graph G is projective iff G does not contain any graph in \mathcal{A}_1 as a minor.

Proof. Let G be connected with $G \succeq H$.

Proposition 2. Let \mathcal{A}_2 be the 29 2-connected graphs in \mathcal{A} . Then a 2-connected graph G is projective iff G does not contain any graph in \mathcal{A}_2 as a minor.

Proof. Let G be 2-connected with $G \succeq H$.

Proposition 3. Let \mathcal{A}_3 be the 23 3-connected graphs in \mathcal{A} . Then a 3-connected graph G is projective iff G does not contain any graph in \mathcal{A}_3 as a minor.

Proof. Let G be 3-connected with $G \succeq H$.

- H is a minor of G, and
- a k-separation of H does not extend to G

- H is a minor of G, and
- a k-separation of H does not extend to G

- H is a minor of G, and
- a k-separation of H does not extend to G

- H is a minor of G, and
- a k-separation of H does not extend to G

Lemma. G contains H^+ .

- H is a minor of G, and
- a k-separation of H does not extend to G

Lemma. G contains H^+ .

This Lemma gives us a short proof for Proposition 3: 3-connected \mathcal{A}_3 -free graphs are projective

Proof. We need only prove that every 3-connected non-projective graph contains a graph in \mathcal{A}_3 as a minor. By Theorem 2, we may assume that G has a graph $A \in \mathcal{A}_2$ as a minor, where A is one of the six graphs in \mathcal{A}_2 of connectivity two, which are listed in Figure 2.1. Notice that each of these graphs is a 2-sum of two graphs among $\{K_{3,3}, K_5\}$. By Theorem 2, G contains a twist J of the 2-separation of A as a minor where J is constructed from rooted graphs (J_i, R_i) (i = 1, 2) that are among the graphs shown in Figure 1, which we call $K_{3,3}^{N1}, K_{3,3}^{N2}, K_{3,3}^{N3}, K_{3,3}^{N3}, K_{5,1}^{N3}, and <math>K_5^2$, respectively. Let M be the matching used to construct J from J_1 and J_2 .

Figure 1: Seven possibilities for (J_i, R_i) : $K_{3,3}^{N1}, K_{3,3}^{N2}, K_{3,3}^{N3}, K_{3,3}^{E1}, K_{3,3}^{E2}, K_5^{L1}$, and K_5^{22}

First assume (J_1, R_1) is one of $K_{3,3}^{N1}, K_{3,2}^{N2}$, or $K_{3,3}^{N3}$, and contract the entire matching M to obtain J'. Notice that $K_{3,3}^{N3}$ can be contracted to $K_{3,3}^{N2}, K_{3,3}^{E2}$ can be contracted to $K_{3,3}^{E1}$, and K_5^2 can be contracted to K_5^1 . So we may assume (J_1, R_1) is either $K_{3,3}^{N1}$ or $K_{3,3}^{N2}$ and (J_2, R_2) is one of $K_{3,3}^{N1}, K_{3,3}^{N2}, K_{3,3}^{E1}$, or K_5^1 . Now notice that $K_{2,3}$ rooted at the three mutually non-adjacent vertices can be obtained by contracting and deleting edges of $K_{3,3}^{N2}, K_{3,3}^{E1}$, or K_5^1 . Therefore if (J_1, R_1) or (J_2, R_2) is $K_{3,3}^{N3}$, then J' contains $K_{3,5} = E_3 \in \mathcal{A}_3$ as a minor. Now we may assume that (J_1, R_1) is $K_{3,2}^{N2}$ and (J_2, R_2) is $K_{3,3}^{N3}, K_{3,3}^{N2}$, or K_5^1 . If (J_2, R_2) is $K_{3,3}^{N2}$, delete an edge from it to obtain $K_{3,5}^{E1}$; if (J_2, R_2) is $K_{3,3}^{N3}$, thas J_1 has either $E_5 \in \mathcal{A}_3$ or $F_1 \in \mathcal{A}_3$ as a subgraph; and if (J_2, R_2) is K_5^1 , J' has $D_3 \in \mathcal{A}_3$ as a subgraph.

Figure 2: Six graphs in \mathcal{A}_3 : B_1 , C_7 , D_3 , E_3 , E_5 , and F_1

Now (J_i, R_i) must be among $K_{5,3}^{E1}, K_{5,3}^{E2}, K_5^1$, and K_5^2 for i = 1, 2. Suppose (J_1, R_1) is $K_{3,3}^{E2}$ or K_5^2 . We contract the entire matching M to obtain J'. If (J_2, R_2) is $K_{5,3}^{E2}$ or K_5^2 , contract it to $K_{3,3}^{E1}$ or K_5^1 , respectively. In case (J_1, R_1) is $K_{3,3}^{E2}$, if (J_2, R_2) is $K_{5,3}^{E1}$, J' has F_1 as a minor, and if (J_2, R_2) is K_5^1 , J' has D_3 as a minor. In case (J_1, R_1) is $K_{5,3}^2$, if (J_2, R_2) is $K_{5,3}^2$, if (J_2, R_2) is $K_{5,3}^{E1}$, J' has D_3 or F_1 as a minor, if (J_2, R_2) is $K_{5,3}^1$, J' has $C_7 \in \mathcal{A}_3$ as a subgraph.

So (J_i, R_i) is either $K_{3,3}^{E_1}$ or K_5^1 for i = 1, 2. In this case, we may no longer contract the entire matching M since this may result in a projective graph. Suppose $\{v_1, v_2\}$ is the 2-cut of A, then contract any edge of M incident to some vertex with label either v_1 or v_2 . Then if (J_1, R_1) and (J_2, R_2) are both $K_{3,3}^{E_1}$, J' has either E_5 or F_1 as a subgraph. If (J_1, R_1) is $K_{3,3}^{E_1}$ and (J_2, R_2) is K_5^1 , J' has D_3 as a subgraph. Finally if (J_1, R_1) and (J_2, R_2) are both K_5^1 , J' has either B_1 or C_7 as a subgraph. QED

Theorem.

- (1) A connected graph is projective iff it is \mathcal{A}_1 -free.
- (2) A 2-connected graph is projective iff it is \mathcal{A}_2 -free.
- (3) A 3-connected graph is projective iff it is \mathcal{A}_3 -free.
 - (4) An internally 4-connected graph is projective iff \uparrow it is \mathcal{A}_4^* -free.

- our first main result

proved by Robertson, Seymour, and Thomas

 A_2

 D_{17}

 E_{20}

 B_1''

Problem. Removing "accident" graphs from \mathcal{M}_{Σ}

Theorem (Hall) Except for K_5 , a 3-connected graph is non-planar iff it contains $K_{3,3}$. K_5 is an accident!

Objective. Find $\mathcal{B} \subseteq \mathcal{A}_3$ such that:

With finitely many exceptions, a 3-connected graph is non-projective iff it contains a graph in \mathcal{B}

Theorem. There are precisely two minimal sets \mathcal{B} :

•
$$\mathcal{A}_3 - \{A_2, C_4, C_7, D_{17}\}$$
 (21 exceptions)
• $\mathcal{A}_3 - \{B_7, C_7, D_{17}\}$ (21 exceptions)

Proof. Using Splitter Theorem . . .

Splitter Theorem. (Seymour) If

- G and H are 3-connected
- $K_4 \neq H < G \neq W_n$
- then $G \ge H' \in \{H\text{-adds}, H\text{-splits}\}.$

Hall Theorem. If $G \neq K_5$ is 3-connected nonplanar then $G \geq K_{3,3}$.

Proof. Nonplanar $\Rightarrow G \ge K_5$ or $K_{3,3}$ $\Rightarrow G \ge K_5$ $\Rightarrow G \ge K_5$ -split $\ge K_{3,3}$. **Theorem.** There are precisely two minimal sets \mathcal{B} :

•
$$\mathcal{A}_3 - \{A_2, C_4, C_7, D_{17}\}$$
 (21 exceptions)
• $\mathcal{A}_3 - \{B_7, C_7, D_{17}\}$ (21 exceptions)

Proof. Using Splitter Theorem . . .

Objective. Find $\mathcal{B} \subseteq \mathcal{A}_3$ such that:

With finitely many exceptions, an internally 4-connected graph is non-projective iff it contains a graph in \mathcal{B}

Theorem (Our second main result). The following $\{D_3, E_5, E_{20}, E_{22}, F_1, F_4\}$

is a minimum set \mathcal{B} . (The largest exception has 14 vertices and 31 edges.) <u>A different formulation</u>: An i-4-connected graph G with ≥ 15 vertices is projective iff G contains none of the following:

 $D_3, E_5, E_{20}, E_{22}, F_1, F_4$

Proof.

Splitter Theorem.

If $G \ge H$, both i-4-c, and |V(G)| > |V(H)|, then $G \ge H'$, where H'

Outer-Projective graphs.

A graph G is *outer-projective* if G admits a projective drawing such that there is a face incident with all vertices.

Observation. G is outer-projective iff \hat{G} is projective.

Corollary. For outer-projective graphs, the set \mathcal{F} of forbidden minors consists of precisely minimal graphs in $\{G - v : G \in \mathcal{A}, v \in V(G)\}$

Archdeacon, Hartsfield, Little, Mohar (1998): $|\mathcal{F}| = 32$

Theorem.

(1) A connected G is OP iff G is \mathcal{F}_1 -free; $|\mathcal{F}_1| = 29$ (2) A 2-connected G is OP iff G is \mathcal{F}_2 -free; $|\mathcal{F}_2| = 23$ (3) A 3-connected G is OP iff G is \mathcal{F}_3^* -free; $|\mathcal{F}_3^*| = 9$ (4) An i-4-connected G with $|G| \ge 9$ is OP iff G is -free.