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Goal

To tell you about a new idea for using our conjecture-generating
program:

generating sketches of proofs (or proof ideas);

and a new proof of the Friendship Theorem.
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The Program

I Open-source

I Written for Sage

I Python

I Lots of standard mathematical packages: GAP, R, GLPK,
CVXOPT, NumPy, SciPy, LATEX, matlabplot

I Lots of Graph Theory: graphs, invariants, properties,
constructors,. . .

I Growing
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Properties

Example: pairs have unique common neighbor:

Every pair of vertices has exactly one common neighbor.

Figure: A flower F4 with four petals.
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87 properties
5 propositional operators: and, or, implies, not, xor
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What you get

Conjectures that are true for all input objects.

Conjectures that say something not implied by any previously
output conjecture.
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Theory

Idea: You want conjectures that are an improvement on existing
theory.

property = pairs_have_unique_common_neighbor

theory = [is_k3]

propertyBasedConjecture(graph_objects, properties,

property, theory = theory, sufficient = True,

precomputed = precomputed)

Conjecture:

(((is_eulerian)&(is_planar))&(is_gallai_tree))->

(pairs_have_unique_common_neighbor)
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Proof Sketch Generating Idea

I Prove: P =⇒ Q.

I Run necessary condition conjectures for P, using Q as the
“theory”.

I The generated conjectures must be “better” than Q for at
least one graph conjectures.

I Get:
P =⇒ C1

P =⇒ C2

I By the truth test, each object x that has property P has
properties C1 and C2.

I Thus x is in the intersection of the set of graphs having
properties C1 and C2.

I If there is x in the graph database with x in C1 ∩ C2 but
x 6∈ Q then program wouldn’t stop—as conjectures could be
improved.



Proof Sketch Generating Idea

I Prove: P =⇒ Q.

I Run necessary condition conjectures for P, using Q as the
“theory”.

I Lemma 1:
P =⇒ C1

I Lemma 2:
P =⇒ C2

I Lemma 3:
C1 ∩ C2 ⊆ Q

I Then lemmas imply Theorem:

P =⇒ Q

I (semantic proof)



The Friendship Theorem

If every pair of people in a group have exactly one friend in
common, then there is a person in the group that is friends with all
of them.

If every pair of vertices in a graph have a unique common
neighbor, then there is a vertex in the graph that is adjacent to all
the other vertices (Erdős, Rényi, Sós, 1966).
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The Friendship Theorem

If every pair of vertices in a graph have a unique common
neighbor, then there is a vertex in the graph that is adjacent to all
the other vertices.



The Friendship Theorem

If every pair of vertices in a graph have a unique common
neighbor, then there is a vertex in the graph that is adjacent to all
the other vertices.

Useful Observation: Can’t have any four-cycles.



Conjectured Lemmas

Investigate:

(pairs_have_unique_common_neighbor)->(has_star_center)

Investigation:

property = pairs_have_unique_common_neighbor

theory = [has_star_center]

Conjectures:

(pairs_have_unique_common_neighbor)->(is_eulerian)

(pairs_have_unique_common_neighbor)->(is_circular_planar)

(pairs_have_unique_common_neighbor)->(is_gallai_tree)



Conjectured Lemmas

Investigate:

(pairs_have_unique_common_neighbor)->(has_star_center)

Investigation:

property = pairs_have_unique_common_neighbor

theory = [has_star_center]

Conjectures:

(pairs_have_unique_common_neighbor)->(is_eulerian)

(pairs_have_unique_common_neighbor)->(is_circular_planar)

(pairs_have_unique_common_neighbor)->(is_gallai_tree)



Conjectured Lemmas

Investigate:

(pairs_have_unique_common_neighbor)->(has_star_center)

Investigation:

property = pairs_have_unique_common_neighbor

theory = [has_star_center]

Conjectures:

(pairs_have_unique_common_neighbor)->(is_eulerian)

(pairs_have_unique_common_neighbor)->(is_circular_planar)

(pairs_have_unique_common_neighbor)->(is_gallai_tree)



Conjectured Lemma 1

(pairs_have_unique_common_neighbor)->(is_eulerian)

Euler’s criterion: A connected graph is eulerian if and only if every
degree is even.
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Conjectured Lemma 2

(pairs_have_unique_common_neighbor)->(is_circular_planar)

Theorem (Chartrand & Harary, 1967) A graph is outerplanar if and
only if it does not contain a subdivision of K4 or K3,3.



Conjectured Lemma 2

(pairs_have_unique_common_neighbor)->(is_circular_planar)



Conjectured Lemma 3

(pairs_have_unique_common_neighbor)->(is_gallai_tree)



Conjectured Lemma 3

Proof Main Ideas:

I Two-connected Gallai-trees are complete graphs or odd cycles.

I Outerplanar and Gallai-tree means the blocks are odd cycles.

I If cycle has degree two vertices then the neighbors of these
vertices must be adjacent.
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Conjectured Lemma 3

Proof Main Ideas:

I Assume the graph is two-connected. It is outerplanar and
eulerian.

I If the graph is not a cycle, there is a vertex of degree at least
4.

I Then the unique neighbor condition yields a contradiction.

I So the graph is a triangle.

I Apply induction.

I Assume the graph has a cut vertex v .

I Each block is two-connected and must have the property that
every pair of vertices has a unique common neighbor.

I So each block is a triangle.

I All components of G − v are Gallai trees.
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The Friendship Theorem
If every pair of vertices in a graph have a unique common
neighbor, then there is a vertex in the graph that is adjacent to all
the other vertices.
Proof Ideas:

I Assume all pairs have a unique common neighbor.

I Then the graph is eulerian, outerplanar, and a Gallai-tree.
I If its two-connected, its a triangle.
I If it has two or more cut-vertices, diameter is at least 3,

violating the common neighbor condition.
I So it has at most one cut vertex, and all blocks are triangles.
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87 properties

78 invariants

Open-source, on GitHub—anyone can use these definitions or add
to them.
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Human’s Can’t Make Better Conjectures

There are no simpler statements that are true and significant.
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Code all published graph theory concepts and examples.

This will be a huge project.

What you’d get:

I Conjectures that are true for all published examples.

I The simplest conjectures using published concepts.

Kiran would have liked that.
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Thank You!

Automated Conjecturing in Sage:
http://nvcleemp.github.io/conjecturing/

C. E. Larson and N. Van Cleemput, Automated Conjecturing I:
Fajtlowicz’s Dalmatian Heuristic Revisited, Artificial Intelligence

231 (2016) 17-38.

clarson@vcu.edu

http://nvcleemp.github.io/conjecturing/

