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Outline

• Background on Severi degrees (classical and generalized ones)

• Computing Severi degrees via long-edge graphs

– Introduce combinatorial objects in Fomin-Mikhalkin’s formula for

computing classical Severi degrees

– Two main results: Vanishing Lemma and Linearity Theorem

– First application

• Severi degrees on toric surfaces (joint work with Brian Osserman)

– Introduce Ardila-Block’s formula for computing Severi degrees for

certain toric surfaces

– Second application
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PART I:

Background on Severi degrees

Summary: We introduce classical and generalized Severi degrees and

relevant results, finishing with the original motivation of this work.
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Classical Severi degree

• Nd,δ counts the number of curves of degree d with δ nodes passing

through
d(d+ 3)

2
− δ general points in CP2.

• Nd,δ is the degree of the Severi variety.

• Nd,δ = N
d, (d−1)(d−2)

2 −δ
(Gromov-Witten invariant) when d ≥ δ + 2.
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Classical Severi degree

• Nd,δ counts the number of curves of degree d with δ nodes passing

through
d(d+ 3)

2
− δ general points in CP2.

• Nd,δ is the degree of the Severi variety.

• Nd,δ = N
d, (d−1)(d−2)

2 −δ
(Gromov-Witten invariant) when d ≥ δ + 2.

Generalized Severi degree

Let L be a line bundle on a complex projective smooth surface Y.

• N δ(Y,L ) counts the number of δ-nodal curves in L passing through

dim |L | − δ points in general position.

• N δ(CP2,OCP
2(d)) = Nd,δ.
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Polynomiality of N d,δ

• In 1994, Di Francesco and Itzykson conjectured that for fixed δ, the

Severi degree Nd,δ is given by a node polynomial Nδ(d) for sufficiently

large d.
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Polynomiality of N d,δ

• In 1994, Di Francesco and Itzykson conjectured that for fixed δ, the

Severi degree Nd,δ is given by a node polynomial Nδ(d) for sufficiently

large d.

• In 2009, Fomin and Mikhalkin showed that Nd,δ is given by a node

polynomial Nδ(d) for d ≥ 2δ.

We call d ≥ 2δ the threshold bound for polynomiality of Nd,δ.
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Polynomiality of N d,δ

• In 1994, Di Francesco and Itzykson conjectured that for fixed δ, the

Severi degree Nd,δ is given by a node polynomial Nδ(d) for sufficiently

large d.

• In 2009, Fomin and Mikhalkin showed that Nd,δ is given by a node

polynomial Nδ(d) for d ≥ 2δ.

We call d ≥ 2δ the threshold bound for polynomiality of Nd,δ.

• In 2011, Block improved the threshold bound to d ≥ δ.
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Polynomiality of N d,δ

• In 1994, Di Francesco and Itzykson conjectured that for fixed δ, the

Severi degree Nd,δ is given by a node polynomial Nδ(d) for sufficiently

large d.

• In 2009, Fomin and Mikhalkin showed that Nd,δ is given by a node

polynomial Nδ(d) for d ≥ 2δ.

We call d ≥ 2δ the threshold bound for polynomiality of Nd,δ.

• In 2011, Block improved the threshold bound to d ≥ δ.

• In 2012, Kleiman and Shende lowered the bound further to d ≥ ⌈δ/2⌉+

1.

Page 5



A combinatorial analysis of Severi degrees Fu Liu

Göttsche’s conjecture

In 1998, Göttsche conjectured the following:

(i) For every fixed δ, there exists a universal polynomial Tδ(w, x, y, z)

of degree δ such that

N δ(Y,L ) = Tδ(L
2,L · K ,K 2, c2)

whenever Y is smooth and L is (5δ − 1)-ample, where K and c2 are

the canonical class and second Chern class of Y , respectively.
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Göttsche’s conjecture

In 1998, Göttsche conjectured the following:

(i) For every fixed δ, there exists a universal polynomial Tδ(w, x, y, z)

of degree δ such that

N δ(Y,L ) = Tδ(L
2,L · K ,K 2, c2)

whenever Y is smooth and L is (5δ − 1)-ample, where K and c2 are

the canonical class and second Chern class of Y , respectively.

(ii) Moreover, there exist power series B1(q) and B2(q) such that

∑

δ≥0

Tδ(x, y, z, w)(DG2(q))
δ =

(DG2(q)/q)
z+w
12 +x−y

2 B1(q)
zB2(q)

y

(∆(q)D2G2(q)/q2)
z+w
24

,

where G2(q) = − 1
24 +

∑

n>0

(
∑

d|n d
)

qn is the second Eisenstein series,

D = q d
dq

and ∆(q) = q
∏

k>0(1− qk)24 is the modular discriminant.

The above formula is known as the Göttsche-Yau-Zaslow formula.
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Göttsche’s conjecture (cont’d)

• In 2010, Tzeng proved Göttsche’s conjecture (both parts).

• In 2011, Kool, Shende and Thomas proved part (i) of Göttsche’s con-

jecture, i.e., the assertion of the existence of a universal polynomial,

with a sharper bound on the necessary threshold on the ampleness of

L .
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Göttsche’s conjecture (cont’d)

• In 2010, Tzeng proved Göttsche’s conjecture (both parts).

• In 2011, Kool, Shende and Thomas proved part (i) of Göttsche’s con-

jecture, i.e., the assertion of the existence of a universal polynomial,

with a sharper bound on the necessary threshold on the ampleness of

L .

Connection to node polynomial

Nd,δ = N δ(Y,L ) when Y = CP2,L = OCP
2(d), in which case the four

topological numbers become:

L
2 = d2,L · K = −3d,K 2 = 9, c2 = 3.

Thus,

Nδ(d) = Tδ(d
2,−3d, 9, 3).
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A consequence of the GYZ formula

Recall the Göttsche-Yau-Zaslow’s formula

∑

δ≥0

Tδ(x, y, z, w)(DG2(q))
δ =

(DG2(q)/q)
z+w
12

+x−y

2 B1(q)
zB2(q)

y

(∆(q)D2G2(q)/q2)
z+w
24

,

Proposition (Göttsche). If we form the generating function

N (t) :=
∑

δ≥0

Tδ(w, x, y, z)t
δ,

and set Q(t) := logN (t), then

Q(t) = wA1(t) + xA2(t) + yA3(t) + zA4(t).

for some A1, A2, A3, A4 ∈ Q[[t]].

In other words, Qδ(w, x, y, z) := [tδ]Q(t) is a linear function in w, x, y, z.
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A consequence of the GYZ formula

Recall the Göttsche-Yau-Zaslow’s formula

∑

δ≥0

Tδ(x, y, z, w)(DG2(q))
δ =

(DG2(q)/q)
z+w
12 +x−y

2 B1(q)
zB2(q)

y

(∆(q)D2G2(q)/q2)
z+w
24

,

Proposition (Göttsche). If we form the generating function

N (t) :=
∑

δ≥0

Tδ(w, x, y, z)t
δ,

and set Q(t) := logN (t), then

Q(t) = wA1(t) + xA2(t) + yA3(t) + zA4(t).

for some A1, A2, A3, A4 ∈ Q[[t]].

In other words, Qδ(w, x, y, z) := [tδ]Q(t) is a linear function in w, x, y, z.

We call Qδ(w, x, y, z) the logarithmic version of Tδ(w, x, y, z).
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Logarithmic versions of Severi degrees

We let Qδ(Y,L ) be the logarithmic version of the generalized Severi

degree N δ(Y,L ), that is,

∑

δ≥1

Qδ(Y,L )tδ = log

(
∑

δ≥0

N δ(Y,L )tδ

)

.

Corollary. For any fixed δ, there is a linear function Qδ(w, x, y, z) (as

we defined earlier) such that

Qδ(Y,L ) = Qδ(L
2,L · K ,K 2, c2)

whenever Y is smooth and L is sufficiently ample, where K and c2 are

the canonical class and second Chern class of Y , respectively.
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Logarithmic versions of Severi degrees (cont’d)

Similarly, we let Qd,δ be the logarithmic version of the classical Severi

degree Nd,δ, and Qδ(d) the logarithmic version of the node polynomial

Nδ(d).

Corollary. For fixed δ, Qd,δ is given by Qδ(d) which is a quadratic poly-

nomial in d, for sufficiently large d.

Proof. Recall that
Nδ(d) = Tδ(d

2,−3d, 9, 3).

Hence,
Qδ(d) = Qδ(d

2,−3d, 9, 3).
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Logarithmic versions of Severi degrees (cont’d)

Similarly, we let Qd,δ be the logarithmic version of the classical Severi

degree Nd,δ, and Qδ(d) the logarithmic version of the node polynomial

Nδ(d).

Corollary. For fixed δ, Qd,δ is given by Qδ(d) which is a quadratic poly-

nomial in d, for sufficiently large d.

Proof. Recall that
Nδ(d) = Tδ(d

2,−3d, 9, 3).

Hence,
Qδ(d) = Qδ(d

2,−3d, 9, 3).

Original Motivation Fomin-Mikhalkin’s proof for the polynomiality of

Nd,δ is combinatorial. Can we give a direct combinatorial proof for the

above corollary?
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PART II:

Computing Severi degrees

via long-edge graphs

Summary: We introduce long-edge graphs and Fomin-Mikhalkin’s for-

mula for computing classical Severi degrees and discuss our two main re-

sults, using which we give a combinatorial proof for the quadradicity of

Qd,δ.
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Some History

• Based on Mikhalkin’s work, Brugallé and Mikhalkin gave an enumera-

tive formula for the classical Severi degree Nd,δ in terms of “(marked)

labeled floor diagrams”. (2007-2008)
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Some History

• Based on Mikhalkin’s work, Brugallé and Mikhalkin gave an enumera-

tive formula for the classical Severi degree Nd,δ in terms of “(marked)

labeled floor diagrams”. (2007-2008)

• Fomin and Mikhalkin reformulated Brugallé and Mikhalkin’s results

by introducing a “template decomposition” of “long-edge graphs”, and

established the polynomiality of Nd,δ. (2009)
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Some History

• Based on Mikhalkin’s work, Brugallé and Mikhalkin gave an enumera-

tive formula for the classical Severi degree Nd,δ in terms of “(marked)

labeled floor diagrams”. (2007-2008)

• Fomin and Mikhalkin reformulated Brugallé and Mikhalkin’s results

by introducing a “template decomposition” of “long-edge graphs”, and

established the polynomiality of Nd,δ. (2009)

• Block, Colley and Kennedy considered the logarithmic version of a

special single variable function associated to long-edge graphs which

appeared in Fomin-Mikhalkin’s formula, and conjectured it to be lin-

ear. They have since proved their conjecture. (2012-13)
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Some History

• Based on Mikhalkin’s work, Brugallé and Mikhalkin gave an enumera-

tive formula for the classical Severi degree Nd,δ in terms of “(marked)

labeled floor diagrams”. (2007-2008)

• Fomin and Mikhalkin reformulated Brugallé and Mikhalkin’s results

by introducing a “template decomposition” of “long-edge graphs”, and

established the polynomiality of Nd,δ. (2009)

• Block, Colley and Kennedy considered the logarithmic version of a

special single variable function associated to long-edge graphs which

appeared in Fomin-Mikhalkin’s formula, and conjectured it to be lin-

ear. They have since proved their conjecture. (2012-13)

• We consider a special multivariate function Pβ(G) associated to long-

edge graphs G that generalizes BCK’s function and its logarithmic

version Φβ(G), and prove that Φβ(G) is always linear. (2013)
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Long-edge graphs

Definition. A long-edge graph G is a graph (V,E) with a weight function

ρ satisfying the following conditions:

a) The vertex set V = N = {0, 1, 2, . . . }, and the edge set E is finite.

b) Multiple edges are allowed, but loops are not.

c) The weight function ρ : E → P assigns a positive integer to each edge.

d) There are no short edges, i.e., there’s no edges connecting i and i + 1

with weight 1.

We define the multiplicity of G to be

µ(G) =
∏

e∈E

(ρ(e))2,

and the cogenus of G to be

δ(G) =
∑

e∈E

(l(e)ρ(e)− 1) ,

where for any e = {i, j} ∈ E with i < j, we define l(e) = j − i.
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Examples of long-edge graphs

2

1

0 1 2

G1

2

1

3 4 5

G2

2

1

23 4 5 6

G3

µ(G1) = µ(G2) = 22 · 12 = 4, δ(G1) = δ(G2) = (2 · 1− 1) + (1 · 2− 1) = 2,

µ(G3) = 22 · 12 · 22 = 16, δ(G3) = (2 · 1− 1) + (1 · 2− 1) + (2 · 1− 1) = 3.

Page 14



A combinatorial analysis of Severi degrees Fu Liu

Examples of long-edge graphs

2

1

0 1 2

G1

2

1

3 4 5

G2

2

1

23 4 5 6

G3

µ(G1) = µ(G2) = 22 · 12 = 4, δ(G1) = δ(G2) = (2 · 1− 1) + (1 · 2− 1) = 2,

µ(G3) = 22 · 12 · 22 = 16, δ(G3) = (2 · 1− 1) + (1 · 2− 1) + (2 · 1− 1) = 3.

Definitions by example

G2 = (G1)(3), since G2 is obtained by shifting G1 three units to the right.

maxv(G3) = 6, minv(G3) = 3,

G1 is a template because minv(G1) = 0 and we cannot “cut” G1 into two

nonempty subgraphs.

G2 is a shifted template, and G3 is not a shifted template.
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Examples of long-edge graphs

2

1

0 1 2

G1

2

1

3 4 5

G2

2

1

23 4 5 6

G3

µ(G1) = µ(G2) = 22 · 12 = 4, δ(G1) = δ(G2) = (2 · 1− 1) + (1 · 2− 1) = 2,

µ(G3) = 22 · 12 · 22 = 16, δ(G3) = (2 · 1− 1) + (1 · 2− 1) + (2 · 1− 1) = 3.

Definitions by example

G2 = (G1)(3), since G2 is obtained by shifting G1 three units to the right.

maxv(G3) = 6, minv(G3) = 3,

G1 is a template because minv(G1) = 0 and we cannot “cut” G1 into two

nonempty subgraphs.

G2 is a shifted template, and G3 is not a shifted template.

Observation Any long-edge graph can be decomposed into shifted

templates.
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β-allowable

Definition. Let G be a long-edge graph with associated weight function

ρ. For each j, we define

λj(G) = sum of the weight of all edges over [j − 1, j]

Let β = (β1, β2, . . . , βM+1) ∈ ZM+1
≥0 (where M ≥ 0). We say G is β-

allowable if maxv(G) ≤ M + 1 and βj ≥ λj(G) for each j.

Example

2

1

0 1 2

G1

2

1

3 4 5

G2

λ1(G1) = 3, λ2(G1) = 1, and λj(G1) = 0 for any j ≥ 3.

Hence, G1 is β-allowable if and only if M ≥ 1, β1 ≥ 3 and β2 ≥ 1.

λ4(G2) = 3, λ5(G2) = 1, and λj(G2) = 0 for any j 6= 4, 5.

G2 is β-allowable if and only if M ≥ 4, β4 ≥ 3 and β5 ≥ 1.
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Strictly β-allowable

Definition. A long-edge graph G is strictly β-allowable if it satisfies the

following conditions:

a) G is β-allowable.

b) Any edge that is incident to the vertex 0 has weight 1.

c) Any edge that is incident to the vertex M + 1 has weight 1.

Example

2

1

0 1 2

G1

2

1

3 4 5

G2

G1 is never strictly β-allowable.

G2 is strictly β-allowable if and only if it is β-allowable.
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Strictly β-allowable

Definition. A long-edge graph G is strictly β-allowable if it satisfies the

following conditions:

a) G is β-allowable.

b) Any edge that is incident to the vertex 0 has weight 1.

c) Any edge that is incident to the vertex M + 1 has weight 1.

Example

2

1

0 1 2

G1

2

1

3 4 5

G2

G1 is never strictly β-allowable.

G2 is strictly β-allowable if and only if it is β-allowable.

Observation A long-edge graph is simultaneously β-allowable and

strictly β-allowable most of the time except for some “boundary” condi-

tions.
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Extended graph

Definition. Suppose G is β-allowable. We create a new graph extβ(G) by

adding βj − λj(G) unweighted edges connecting vertices j − 1 and j for

each 1 ≤ j ≤ M + 1.

Example

2

20 1

G

λ1(G) = 4, and λj(G) = 0 for any j ≥ 2, .

G is β-allowable if and only if β1 ≥ 4, in which case we construct extβ(G)

as above.
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Extended graph

Definition. Suppose G is β-allowable. We create a new graph extβ(G) by

adding βj − λj(G) unweighted edges connecting vertices j − 1 and j for

each 1 ≤ j ≤ M + 1.

Example

2

20 1

G

2

20 1

extβ(G)
... β1 − 4 unweighted

edges

λ1(G) = 4, and λj(G) = 0 for any j ≥ 2, .

G is β-allowable if and only if β1 ≥ 4, in which case we construct extβ(G)

as above.
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Pβ(G) and P s
β(G)

Definition. Suppose G is β-allowable. A β-extended ordering of G is a

total ordering of the vertices and edges of extβ(G) satisfying the following:

a) The ordering extends the natural ordering of the vertices Z≥0 of extβ(G).

b) For any edge {a, b}, its position has to be between a and b.

Remark. When we construct a β-extended ordering, two edges are con-

sidered to be indistinguishable if they have the same endpoints and are of

same weight.
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Pβ(G) and P s
β(G)

Definition. Suppose G is β-allowable. A β-extended ordering of G is a

total ordering of the vertices and edges of extβ(G) satisfying the following:

a) The ordering extends the natural ordering of the vertices Z≥0 of extβ(G).

b) For any edge {a, b}, its position has to be between a and b.

Remark. When we construct a β-extended ordering, two edges are con-

sidered to be indistinguishable if they have the same endpoints and are of

same weight.

For any long-edge graph G, we define

Pβ(G) =

{

# (β-extended orderings of G) if G is β-allowable;

0 otherwise.

P s
β(G) =

{

Pβ(G) if G is strictly β-allowable;

0 otherwise.
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Pβ(G) and P s
β(G) (cont’d)

Example

2

20 1

G

2

20 1

extβ(G)
... β1 − 4 unweighted

edges

Recall that G is β-allowable if and only if β1 ≥ 4.

Suppose β1 ≥ 4. Then extβ(G) have

• vertices 0, 1, 2, . . .,

• 2 edges connecting vertices 0 and 1 of weight 2 which we denote by

e, e, and

• β1 − 4 unweighted edges also connecting vertices 0 and 1 which we

denote by u, u, . . . , u
︸ ︷︷ ︸

β1−4

.
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Pβ(G) and P s
β(G) (cont’d)

Example

2

20 1

G

2

20 1

extβ(G)
... β1 − 4 unweighted

edges

Hence, when β1 ≥ 4, a β-extended ordering of G should look like

0, u, · · · , u, e, u, · · · , u, e, u, · · · , u, 1, 2, 3, 4, . . .

Therefore,

Pβ(G) =

{(
β1−4+2

2

)
=
(
β1−2
2

)
if β1 ≥ 4;

0 otherwise.

Finally,
P s
β(G) = 0,

since G is never strictly β-allowable.
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Fomin-Mikhalkin’s formula

Theorem (Brugallé-Mikhalkin, Fomin-Mikhalkin). The classical Severi

degree Nd,δ is given by

Nd,δ =
∑

G: δ(G)=δ

µ(G)P s
v(d)(G),

where
v(d) := (0, 1, 2, . . . , d), ∀d ∈ Z>0.
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Fomin-Mikhalkin’s formula

Theorem (Brugallé-Mikhalkin, Fomin-Mikhalkin). The classical Severi

degree Nd,δ is given by

Nd,δ =
∑

G: δ(G)=δ

µ(G)P s
v(d)(G),

where
v(d) := (0, 1, 2, . . . , d), ∀d ∈ Z>0.

Logarithmic version

Recall that Qd,δ is the logarithmic version Nd,δ. We define Φβ(G) and

Φs
β(G) be the logarithmic version of Pβ(G) and P s

β(G), respectively. Then

we obtain the logarithmic version of Fomin-Mikhalkin’s formula:

Qd,δ =
∑

G: δ(G)=δ

µ(G)Φs
v(d)(G).

Page 21



A combinatorial analysis of Severi degrees Fu Liu

Fomin-Mikhalkin’s formula

Theorem (Brugallé-Mikhalkin, Fomin-Mikhalkin). The classical Severi

degree Nd,δ is given by

Nd,δ =
∑

G: δ(G)=δ

µ(G)P s
v(d)(G),

where
v(d) := (0, 1, 2, . . . , d), ∀d ∈ Z>0.

Logarithmic version

Recall that Qd,δ is the logarithmic version Nd,δ. We define Φβ(G) and

Φs
β(G) be the logarithmic version of Pβ(G) and P s

β(G), respectively. Then

we obtain the logarithmic version of Fomin-Mikhalkin’s formula:

Qd,δ =
∑

G: δ(G)=δ

µ(G)Φs
v(d)(G).

Our original motivation was to give a combinatorial proof for the result

that Qd,δ is given by quadratic polynomial, for sufficiently large d.
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The Vanishing Lemma

Recall that among the three graphs in the figure,

2

1

0 1 2

G1

2

1

3 4 5

G2

2

1

23 4 5 6

G3

G1 and G2 are shifted templates, and G3 is not a shifted template.

Lemma (L.). Suppose G is not a shifted template. Then

Φs
β(G) = 0.
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The Vanishing Lemma

Recall that among the three graphs in the figure,

2

1

0 1 2

G1

2

1

3 4 5

G2

2

1

23 4 5 6

G3

G1 and G2 are shifted templates, and G3 is not a shifted template.

Lemma (L.). Suppose G is not a shifted template. Then

Φs
β(G) = 0.

Corollary (Block-Colley-Kennedy, L.). Suppose G is not a shifted tem-

plate. Then Φs
v(d)(G) = 0.
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The Vanishing Lemma

Recall that among the three graphs in the figure,

2

1

0 1 2

G1

2

1

3 4 5

G2

2

1

23 4 5 6

G3

G1 and G2 are shifted templates, and G3 is not a shifted template.

Lemma (L.). Suppose G is not a shifted template. Then

Φs
β(G) = 0.

Corollary (Block-Colley-Kennedy, L.). Suppose G is not a shifted tem-

plate. Then Φs
v(d)(G) = 0.

Applying the corollary, we get

Qd,δ =
∑

G: δ(G)=δ

µ(G)Φs
v(d)(G) =

∑

template Γ: δ(Γ)=δ

µ(Γ)
∑

k≥0

Φs
v(d)

(
Γ(k)

)
,

Page 22



A combinatorial analysis of Severi degrees Fu Liu

The Linearity Theorem

Theorem (L.). Suppose G is a long-edge graph satisfyingmaxv(G) ≤ M + 1.

Then for any β = (β1, . . . , βM+1) satisfying βj ≥ λj(G) for all j, the values

of Φβ (G) are given by a linear multivariate function in β.

Corollary (Block-Colley-Kennedy, L.). Suppose G is a long-edge graph.

Then for sufficiently large k (depending on G), and suffciently large d

(depending on G and k), Φ
v(d)(G(k)) is a linear function in k.
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Quadraticity of Qd,δ

Sketch of Proof. We already show

Qd,δ =
∑

template Γ: δ(Γ)=δ

µ(Γ)
∑

k≥0

Φs
v(d)

(
Γ(k)

)
.

Then the conclusion follows from the following points:

• There are finitely many templates of a given cogenus δ.
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Quadraticity of Qd,δ

Sketch of Proof. We already show

Qd,δ =
∑

template Γ: δ(Γ)=δ

µ(Γ)
∑

k≥0

Φs
v(d)

(
Γ(k)

)
.

Then the conclusion follows from the following points:

• There are finitely many templates of a given cogenus δ.

• For fixed d, the second summation has finitely many terms. In fact,

we were able to show that the second summation becomes

d+ǫ1(Γ)−l(Γ)
∑

k=0

Φs
v(d)

(
Γ(k)

)
=

d+ǫ1(Γ)−l(Γ)
∑

k=1

Φ
v(d)

(
Γ(k)

)
.
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Quadraticity of Qd,δ

Sketch of Proof. We already show

Qd,δ =
∑

template Γ: δ(Γ)=δ

µ(Γ)
∑

k≥0

Φs
v(d)

(
Γ(k)

)
.

Then the conclusion follows from the following points:

• There are finitely many templates of a given cogenus δ.

• For fixed d, the second summation has finitely many terms. In fact,

we were able to show that the second summation becomes

d+ǫ1(Γ)−l(Γ)
∑

k=0

Φs
v(d)

(
Γ(k)

)
=

d+ǫ1(Γ)−l(Γ)
∑

k=1

Φ
v(d)

(
Γ(k)

)
.

• It follows from the linearity corollary that except for first several terms,

all other terms are a linear function in k.
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We can do more

• Recover the threshold bound d ≥ δ for the polynomiality of Nd,δ ob-

tained by Block.

• and . . .

Page 25



A combinatorial analysis of Severi degrees Fu Liu

PART III:

Severi degrees on toric surfaces

Summary: We consider generalized Severi degrees on certain toric

surfaces. By analyzing Ardila-Block’s formula and applying the results

from PART II, we obtain universality results that has close connection to

Göttsche-Yau-Zaslow formula.

This is joint work with Brian Osserman.
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Severi degrees N∆,δ

Recall that N δ(Y,L ) is the generalized Severi degree that counts the

number of δ-nodal curves in L passing through dim |L | − δ points in

general position, and Qδ(Y,L ) is its logarithmic version.

Given a lattice polygon ∆, let Y (∆) be associated toric surface, and

L (∆) be the line bundle, and set

N∆,δ := N δ(Y (∆),L (∆)), and Q∆,δ := Qδ(Y (∆),L (∆)).
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Severi degrees N∆,δ

Recall that N δ(Y,L ) is the generalized Severi degree that counts the

number of δ-nodal curves in L passing through dim |L | − δ points in

general position, and Qδ(Y,L ) is its logarithmic version.

Given a lattice polygon ∆, let Y (∆) be associated toric surface, and

L (∆) be the line bundle, and set

N∆,δ := N δ(Y (∆),L (∆)), and Q∆,δ := Qδ(Y (∆),L (∆)).

Recall that Fomin-Mikhalkin’s formula for Nd,δ was derived from Bru-

gallé-Mikhalkin’s enumerative formula for Severi degrees using labeled

floor diagrams.

In fact, the formula introduced by Brugallé and Mikhalkin works not

only for Nd,δ, but also for Severi degrees N∆,δ arising from h-transverse

polygons.

Page 27



A combinatorial analysis of Severi degrees Fu Liu

h-transverse polygon

Definition. A polygon ∆ is h-transverse if all its normal vectors have

infinite or integer slope.

If v is a vertex of ∆, we define det(v) to be | det(w1, w2)|, where w1 and

w2 are primitive integer normal vectors to the edges adjacent to v.

Example

det(v) =

∣
∣
∣
∣
∣
∣

det




1 1

2 0





∣
∣
∣
∣
∣
∣

= 2 > 1

=⇒ singularity

The normals of the top and bottom edges have slopes ∞ and −∞.

The normals of the four edges on the left have slopes −3,−1, 0 and 1.

The normals of the three edges on the right have slopes 2, 0 and −2.
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Ardila-Block’s work

In parallel to Fomin-Mikhalkin’s work, Ardila and Block reformulate

Brugallé-Mikhalkin’s formula for N∆,δ where ∆ is an h-transverse polygon,

and obtain polynomiality result.

Theorem (Brugallé-Mikhalkin, Ardila-Block). For any h-transverse poly-

gon ∆ and any δ ≥ 0, the Severi degree N∆,δ is given by

N∆,δ =
∑

∆′

∑

G

µ(G)P s
β(∆′)(G),

where the first summation is over all “reorderings” ∆′ of ∆ satisfying

δ(∆′) ≤ δ, and the second summation is over all long-edge graphs G with

δ(G) = δ − δ(∆′).
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Ardila-Block’s work (cont’d)

Ardila and Block encode each h-transverse polygon ∆ with two vectors

c and d.

Example

Slope vector:
c = ((2, 0,−2), (−3,−1, 0, 1))

Edge length vector:
d = (1, (2, 4, 2), (1, 2, 2, 3))

Write
∆ = ∆(c,d).
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Ardila-Block’s work (cont’d)

Theorem (Ardila-Block). Fixing δ and the number of edges on the left

and right of ∆.

• For fixed c, the number N∆,δ is given by a polynomial in d for any

choice of d such that the heights of vertices of ∆(c,d) are sufficiently

spread out relative to δ.

• The number N∆,δ is given by a polynomial in c and d for any c

that is sufficiently spread out, any choice of d such that the heights of

vertices of ∆(c,d) are sufficiently spread out relative to δ.

0

1

2

3

4

5

6

7

8
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Comparing with Tzeng’s theorem

(i) Advantage: Treats many singular surfaces when Tzeng’s theorem

only covers smooth surfaces.

(ii) Disadvantage: The universality is not nearly as strong:

– need to fix the number of edges on the left and right;

– infinite slopes are treated differently;

– the number of variables grows with the number of edges;

– no results like the Göttsche-Yau-Zaslow formula.
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Strongly h-transverse

Recall that Ardila-Block’s formula

N∆,δ =
∑

∆′

∑

G

µ(G)P s
β(∆′)(G),

is very similar to Fomin-Mikhalkin’s formula. Thus, naturally we consider

the logarithmic version of it:

Q∆,δ =
∑

∆′

∑

G

µ(G)Φs
β(∆′)(G),

By applying the Vanishing Lemma and the Linearity Theorem, we are

able to give a formula for Q∆,δ.
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Strongly h-transverse

Recall that Ardila-Block’s formula

N∆,δ =
∑

∆′

∑

G

µ(G)P s
β(∆′)(G),

is very similar to Fomin-Mikhalkin’s formula. Thus, naturally we consider

the logarithmic version of it:

Q∆,δ =
∑

∆′

∑

G

µ(G)Φs
β(∆′)(G),

By applying the Vanishing Lemma and the Linearity Theorem, we are

able to give a formula for Q∆,δ. The result is particularly nice when ∆ is

“strongly h-transverse”.

Definition. We say an h-transverse polygon ∆ is strongly h-transverse if

either there is a non-zero horizontal edge at the top of ∆, or the vertex v

at the top has det(v) ∈ {1, 2}, and the same holds for the bottom of ∆.
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Strongly h-transverse

Recall that Ardila-Block’s formula

N∆,δ =
∑

∆′

∑

G

µ(G)P s
β(∆′)(G),

is very similar to Fomin-Mikhalkin’s formula. Thus, naturally we consider

the logarithmic version of it:

Q∆,δ =
∑

∆′

∑

G

µ(G)Φs
β(∆′)(G),

By applying the Vanishing Lemma and the Linearity Theorem, we are

able to give a formula for Q∆,δ. The result is particularly nice when ∆ is

“strongly h-transverse”.

Definition. We say an h-transverse polygon ∆ is strongly h-transverse if

either there is a non-zero horizontal edge at the top of ∆, or the vertex v

at the top has det(v) ∈ {1, 2}, and the same holds for the bottom of ∆.

It turns out that an h-transverse polygon ∆ is strongly h-transverse if

and only if Y (∆) is Gorenstein.
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Main result

Recall the following corollary to Tzeng’s theorem:

Corollary. For any fixed δ, there is a linear function Qδ(w, x, y, z) such

that
Qδ(Y,L ) = Qδ(L

2,L · K ,K 2, c2)

whenever Y is smooth and L is sufficiently ample, where K and c2 are

the canonical class and second Chern class of Y , respectively.
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Main result

Recall the following corollary to Tzeng’s theorem:

Corollary. For any fixed δ, there is a linear function Qδ(w, x, y, z) such

that
Qδ(Y,L ) = Qδ(L

2,L · K ,K 2, c2)

whenever Y is smooth and L is sufficiently ample, where K and c2 are

the canonical class and second Chern class of Y , respectively.

Theorem (L.-Osserman). Fix δ ≥ 1. Then there exist constants E(δ)

and Ei(δ) for i = 1, . . . , δ − 1 such that if ∆ is a strongly h-transverse

polygon with all edges having length at least δ, then

Q∆,δ =Qδ(L (∆)2,L (∆) · K ,K 2, c̃2) + E(δ)S +
δ−1∑

i=1

Ei(δ)Si,

where K is the canonical line bundle on Y (∆), Si is the number of

singularities of Y (∆) of Milnor number i, c̃2 = c2(Y (∆)) +
∑

i≥1 iSi, and

S =
∑

i≥1(i+ 1)Si.
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Connection to Tzeng’s Theorem

Theorem (L.-Osserman). We have the following:

(i) For every fixed δ, there exists a universal polynomial

Tδ(w, x, y, z; s, s1, . . . , sδ−1) such that

N∆,δ = Tδ(L
2,L · K ,K 2, c̃2;S, S1, . . . , Sδ−1)

whenever ∆ is a strongly h-transverse polygon with all edges having

length at least δ.

(ii) Moreover,

∑

δ≥0

Tδ(L
2,L · K ,K 2, c̃2;S, S1, S2, . . . )(DG2(τ))

δ

=
(DG2(τ)/q)

χ(L )B1(q)
K 2

B2(q)
L ·K

(∆(τ)D2G2(τ)/q2)χ(OS)/2
P(q)−S

∏

i≥2

P
(
qi
)Si−1 ,

where P(x) =
∑

n≥0 p(n)x
n is the generating function for partitions.
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Formulas for B1(q) and B2(q)

Corollary. we have

B1(q) = (P(q))−1 · exp

(

−
∑

δ≥1

D(δ) (DG2(q))
δ

)

,

B2(q) = exp

(
∑

δ≥1

(A(δ)− L(δ)) (DG2(q))
δ

)

.

Here

A(δ) =
1

2

∑

µ(Γ)ζ0(Γ),

L(δ) :=−
1

2

∑

µ(Γ)ζ0(Γ)(ℓ(Γ)− ǫ0(Γ)− ǫ1(Γ)),

D(δ) :=−
∑

µ(Γ)
(
ζ2(Γ) + ζ1(Γ)(1− ǫ0(Γ))

)
,

where all summations are over templates of cogenus δ.
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