A combinatorial analysis of

Severi degrees

Fu Liu
University of California, Davis

The 16th Meeting of CombinaTexas
Texas A\&M University
May 6, 2016

Outline

- Background on Severi degrees (classical and generalized ones)
- Computing Severi degrees via long-edge graphs
- Introduce combinatorial objects in Fomin-Mikhalkin's formula for computing classical Severi degrees
- Two main results: Vanishing Lemma and Linearity Theorem
- First application
- Severi degrees on toric surfaces (joint work with Brian Osserman)
- Introduce Ardila-Block's formula for computing Severi degrees for certain toric surfaces
- Second application

PART I:

Background on Severi degrees

Summary: We introduce classical and generalized Severi degrees and relevant results, finishing with the original motivation of this work.

Classical Severi degree

- $N^{d, \delta}$ counts the number of curves of degree d with δ nodes passing through $\frac{d(d+3)}{2}-\delta$ general points in $\mathbb{C P}^{2}$.
- $N^{d, \delta}$ is the degree of the Severi variety.
- $N^{d, \delta}=N_{d, \frac{(d-1)(d-2)}{2}-\delta}$ (Gromov-Witten invariant) when $d \geq \delta+2$.

Classical Severi degree

- $N^{d, \delta}$ counts the number of curves of degree d with δ nodes passing through $\frac{d(d+3)}{2}-\delta$ general points in $\mathbb{C P}^{2}$.
- $N^{d, \delta}$ is the degree of the Severi variety.
- $N^{d, \delta}=N_{d, \frac{(d-1)(d-2)}{2}-\delta}$ (Gromov-Witten invariant) when $d \geq \delta+2$.

Generalized Severi degree
Let \mathscr{L} be a line bundle on a complex projective smooth surface Y.

- $N^{\delta}(Y, \mathscr{L})$ counts the number of δ-nodal curves in \mathscr{L} passing through $\operatorname{dim}|\mathscr{L}|-\delta$ points in general position.
- $N^{\delta}\left(\mathbb{C P}^{2}, \mathscr{O}_{\mathbb{C P}^{2}}(d)\right)=N^{d, \delta}$.

Polynomiality of $N^{d, \delta}$

- In 1994, Di Francesco and Itzykson conjectured that for fixed δ, the Severi degree $N^{d, \delta}$ is given by a node polynomial $N_{\delta}(d)$ for sufficiently large d.

Polynomiality of $N^{d, \delta}$

- In 1994, Di Francesco and Itzykson conjectured that for fixed δ, the Severi degree $N^{d, \delta}$ is given by a node polynomial $N_{\delta}(d)$ for sufficiently large d.
- In 2009, Fomin and Mikhalkin showed that $N^{d, \delta}$ is given by a node polynomial $N_{\delta}(d)$ for $d \geq 2 \delta$.
We call $d \geq 2 \delta$ the threshold bound for polynomiality of $N^{d, \delta}$.

Polynomiality of $N^{d, \delta}$

- In 1994, Di Francesco and Itzykson conjectured that for fixed δ, the Severi degree $N^{d, \delta}$ is given by a node polynomial $N_{\delta}(d)$ for sufficiently large d.
- In 2009, Fomin and Mikhalkin showed that $N^{d, \delta}$ is given by a node polynomial $N_{\delta}(d)$ for $d \geq 2 \delta$.
We call $d \geq 2 \delta$ the threshold bound for polynomiality of $N^{d, \delta}$.
- In 2011, Block improved the threshold bound to $d \geq \delta$.

Polynomiality of $N^{d, \delta}$

- In 1994, Di Francesco and Itzykson conjectured that for fixed δ, the Severi degree $N^{d, \delta}$ is given by a node polynomial $N_{\delta}(d)$ for sufficiently large d.
- In 2009, Fomin and Mikhalkin showed that $N^{d, \delta}$ is given by a node polynomial $N_{\delta}(d)$ for $d \geq 2 \delta$.
We call $d \geq 2 \delta$ the threshold bound for polynomiality of $N^{d, \delta}$.
- In 2011, Block improved the threshold bound to $d \geq \delta$.
- In 2012, Kleiman and Shende lowered the bound further to $d \geq\lceil\delta / 2\rceil+$ 1.

Göttsche's conjecture

In 1998, Göttsche conjectured the following:
(i) For every fixed δ, there exists a universal polynomial $T_{\delta}(w, x, y, z)$ of degree δ such that

$$
N^{\delta}(Y, \mathscr{L})=T_{\delta}\left(\mathscr{L}^{2}, \mathscr{L} \cdot \mathscr{K}, \mathscr{K}^{2}, c_{2}\right)
$$

whenever Y is smooth and \mathscr{L} is ($5 \delta-1$)-ample, where \mathscr{K} and c_{2} are the canonical class and second Chern class of Y, respectively.

Göttsche's conjecture

In 1998, Göttsche conjectured the following:
(i) For every fixed δ, there exists a universal polynomial $T_{\delta}(w, x, y, z)$ of degree δ such that

$$
N^{\delta}(Y, \mathscr{L})=T_{\delta}\left(\mathscr{L}^{2}, \mathscr{L} \cdot \mathscr{K}, \mathscr{K}^{2}, c_{2}\right)
$$

whenever Y is smooth and \mathscr{L} is $(5 \delta-1)$-ample, where \mathscr{K} and c_{2} are the canonical class and second Chern class of Y, respectively.
(ii) Moreover, there exist power series $B_{1}(q)$ and $B_{2}(q)$ such that

$$
\sum_{\delta \geq 0} T_{\delta}(x, y, z, w)\left(D G_{2}(q)\right)^{\delta}=\frac{\left(D G_{2}(q) / q\right)^{\frac{z+w}{12}+\frac{x-y}{2}} B_{1}(q)^{z} B_{2}(q)^{y}}{\left(\Delta(q) D^{2} G_{2}(q) / q^{2}\right)^{\frac{z+w}{24}}}
$$

where $G_{2}(q)=-\frac{1}{24}+\sum_{n>0}\left(\sum_{d \mid n} d\right) q^{n}$ is the second Eisenstein series, $D=q \frac{d}{d q}$ and $\Delta(q)=q \prod_{k>0}\left(1-q^{k}\right)^{24}$ is the modular discriminant.
The above formula is known as the Göttsche-Yau-Zaslow formula.

Göttsche's conjecture (cont'd)

- In 2010, Tzeng proved Göttsche's conjecture (both parts).
- In 2011, Kool, Shende and Thomas proved part (i) of Göttsche's conjecture, i.e., the assertion of the existence of a universal polynomial, with a sharper bound on the necessary threshold on the ampleness of \mathscr{L}.

Göttsche's conjecture (cont'd)

- In 2010, Tzeng proved Göttsche's conjecture (both parts).
- In 2011, Kool, Shende and Thomas proved part (i) of Göttsche's conjecture, i.e., the assertion of the existence of a universal polynomial, with a sharper bound on the necessary threshold on the ampleness of \mathscr{L}.

Connection to node polynomial
$N^{d, \delta}=N^{\delta}(Y, \mathscr{L})$ when $Y=\mathbb{C P}^{2}, \mathscr{L}=\mathscr{O}_{\mathbb{C P}^{2}}(d)$, in which case the four topological numbers become:

$$
\mathscr{L}^{2}=d^{2}, \mathscr{L} \cdot \mathscr{K}=-3 d, \mathscr{K}^{2}=9, c_{2}=3 .
$$

Thus,

$$
N_{\delta}(d)=T_{\delta}\left(d^{2},-3 d, 9,3\right) .
$$

A consequence of the GYZ formula

Recall the Göttsche-Yau-Zaslow's formula

$$
\sum_{\delta \geq 0} T_{\delta}(x, y, z, w)\left(D G_{2}(q)\right)^{\delta}=\frac{\left(D G_{2}(q) / q\right)^{\frac{z+w}{12}+\frac{x-y}{2}} B_{1}(q)^{z} B_{2}(q)^{y}}{\left(\Delta(q) D^{2} G_{2}(q) / q^{2}\right)^{\frac{z+w}{24}}}
$$

Proposition (Göttsche). If we form the generating function

$$
\mathcal{N}(t):=\sum_{\delta \geq 0} T_{\delta}(w, x, y, z) t^{\delta}
$$

and set $\mathcal{Q}(t):=\log \mathcal{N}(t)$, then

$$
\mathcal{Q}(t)=w A_{1}(t)+x A_{2}(t)+y A_{3}(t)+z A_{4}(t)
$$

for some $A_{1}, A_{2}, A_{3}, A_{4} \in \mathbb{Q}[[t]]$.
In other words, $Q_{\delta}(w, x, y, z):=\left[t^{\delta}\right] \mathcal{Q}(t)$ is a linear function in w, x, y, z.

A consequence of the GYZ formula

Recall the Göttsche-Yau-Zaslow's formula

$$
\sum_{\delta \geq 0} T_{\delta}(x, y, z, w)\left(D G_{2}(q)\right)^{\delta}=\frac{\left(D G_{2}(q) / q\right)^{\frac{z+w}{12}+\frac{x-y}{2}} B_{1}(q)^{z} B_{2}(q)^{y}}{\left(\Delta(q) D^{2} G_{2}(q) / q^{2}\right)^{\frac{z+w}{2 t}}}
$$

Proposition (Göttsche). If we form the generating function

$$
\mathcal{N}(t):=\sum_{\delta \geq 0} T_{\delta}(w, x, y, z) t^{\delta},
$$

and set $\mathcal{Q}(t):=\log \mathcal{N}(t)$, then

$$
\mathcal{Q}(t)=w A_{1}(t)+x A_{2}(t)+y A_{3}(t)+z A_{4}(t) .
$$

for some $A_{1}, A_{2}, A_{3}, A_{4} \in \mathbb{Q}[[t]]$.
In other words, $Q_{\delta}(w, x, y, z):=\left[t^{\delta}\right] \mathcal{Q}(t)$ is a linear function in w, x, y, z.
We call $Q_{\delta}(w, x, y, z)$ the logarithmic version of $T_{\delta}(w, x, y, z)$.

Logarithmic versions of Severi degrees

We let $Q^{\delta}(Y, \mathscr{L})$ be the logarithmic version of the generalized Severi degree $N^{\delta}(Y, \mathscr{L})$, that is,

$$
\sum_{\delta \geq 1} Q^{\delta}(Y, \mathscr{L}) t^{\delta}=\log \left(\sum_{\delta \geq 0} N^{\delta}(Y, \mathscr{L}) t^{\delta}\right) .
$$

Corollary. For any fixed δ, there is a linear function $Q_{\delta}(w, x, y, z)$ (as we defined earlier) such that

$$
Q^{\delta}(Y, \mathscr{L})=Q_{\delta}\left(\mathscr{L}^{2}, \mathscr{L} \cdot \mathscr{K}, \mathscr{K}^{2}, c_{2}\right)
$$

whenever Y is smooth and \mathscr{L} is sufficiently ample, where \mathscr{K} and c_{2} are the canonical class and second Chern class of Y, respectively.

Logarithmic versions of Severi degrees (cont'd)

Similarly, we let $Q^{d, \delta}$ be the logarithmic version of the classical Severi degree $N^{d, \delta}$, and $Q_{\delta}(d)$ the logarithmic version of the node polynomial $N_{\delta}(d)$.
Corollary. For fixed $\delta, Q^{d, \delta}$ is given by $Q_{\delta}(d)$ which is a quadratic polynomial in d, for sufficiently large d.

Proof. Recall that

$$
N_{\delta}(d)=T_{\delta}\left(d^{2},-3 d, 9,3\right)
$$

Hence,

$$
Q_{\delta}(d)=Q_{\delta}\left(d^{2},-3 d, 9,3\right) .
$$

Logarithmic versions of Severi degrees (cont'd)

Similarly, we let $Q^{d, \delta}$ be the logarithmic version of the classical Severi degree $N^{d, \delta}$, and $Q_{\delta}(d)$ the logarithmic version of the node polynomial $N_{\delta}(d)$.
Corollary. For fixed $\delta, Q^{d, \delta}$ is given by $Q_{\delta}(d)$ which is a quadratic polynomial in d, for sufficiently large d.

Proof. Recall that

$$
N_{\delta}(d)=T_{\delta}\left(d^{2},-3 d, 9,3\right)
$$

Hence,

$$
Q_{\delta}(d)=Q_{\delta}\left(d^{2},-3 d, 9,3\right) .
$$

Original Motivation Fomin-Mikhalkin's proof for the polynomiality of $\bar{N}^{d, \delta}$ is combinatorial. Can we give a direct combinatorial proof for the above corollary?

PART II:

Computing Severi degrees
 via long-edge graphs

Summary: We introduce long-edge graphs and Fomin-Mikhalkin's formula for computing classical Severi degrees and discuss our two main results, using which we give a combinatorial proof for the quadradicity of $Q^{d, \delta}$.

Some History

- Based on Mikhalkin's work, Brugallé and Mikhalkin gave an enumerative formula for the classical Severi degree $N^{d, \delta}$ in terms of "(marked) labeled floor diagrams". (2007-2008)

Some History

- Based on Mikhalkin's work, Brugallé and Mikhalkin gave an enumerative formula for the classical Severi degree $N^{d, \delta}$ in terms of "(marked) labeled floor diagrams". (2007-2008)
- Fomin and Mikhalkin reformulated Brugallé and Mikhalkin's results by introducing a "template decomposition" of "long-edge graphs", and established the polynomiality of $N^{d, \delta}$. (2009)

Some History

- Based on Mikhalkin's work, Brugallé and Mikhalkin gave an enumerative formula for the classical Severi degree $N^{d, \delta}$ in terms of "(marked) labeled floor diagrams". (2007-2008)
- Fomin and Mikhalkin reformulated Brugallé and Mikhalkin's results by introducing a "template decomposition" of "long-edge graphs", and established the polynomiality of $N^{d, \delta}$. (2009)
- Block, Colley and Kennedy considered the logarithmic version of a special single variable function associated to long-edge graphs which appeared in Fomin-Mikhalkin's formula, and conjectured it to be linear. They have since proved their conjecture. (2012-13)

Some History

- Based on Mikhalkin's work, Brugallé and Mikhalkin gave an enumerative formula for the classical Severi degree $N^{d, \delta}$ in terms of "(marked) labeled floor diagrams". (2007-2008)
- Fomin and Mikhalkin reformulated Brugallé and Mikhalkin's results by introducing a "template decomposition" of "long-edge graphs", and established the polynomiality of $N^{d, \delta}$. (2009)
- Block, Colley and Kennedy considered the logarithmic version of a special single variable function associated to long-edge graphs which appeared in Fomin-Mikhalkin's formula, and conjectured it to be linear. They have since proved their conjecture. (2012-13)
- We consider a special multivariate function $P_{\beta}(G)$ associated to longedge graphs G that generalizes BCK's function and its logarithmic version $\Phi_{\beta}(G)$, and prove that $\Phi_{\beta}(G)$ is always linear. (2013)

Long-edge graphs

Definition. A long-edge graph G is a graph (V, E) with a weight function ρ satisfying the following conditions:
a) The vertex set $V=\mathbb{N}=\{0,1,2, \ldots\}$, and the edge set E is finite.
b) Multiple edges are allowed, but loops are not.
c) The weight function $\rho: E \rightarrow \mathbb{P}$ assigns a positive integer to each edge.
d) There are no short edges, i.e., there's no edges connecting i and $i+1$ with weight 1.

We define the multiplicity of G to be

$$
\mu(G)=\prod_{e \in E}(\rho(e))^{2},
$$

and the cogenus of G to be

$$
\delta(G)=\sum_{e \in E}(l(e) \rho(e)-1),
$$

where for any $e=\{i, j\} \in E$ with $i<j$, we define $l(e)=j-i$.

Examples of long-edge graphs

G_{3}

$$
\mu\left(G_{1}\right)=\mu\left(G_{2}\right)=2^{2} \cdot 1^{2}=4, \quad \delta\left(G_{1}\right)=\delta\left(G_{2}\right)=(2 \cdot 1-1)+(1 \cdot 2-1)=2
$$

$$
\mu\left(G_{3}\right)=2^{2} \cdot 1^{2} \cdot 2^{2}=16, \quad \delta\left(G_{3}\right)=(2 \cdot 1-1)+(1 \cdot 2-1)+(2 \cdot 1-1)=3
$$

Examples of long-edge graphs

G_{1}

G_{2}

G_{3}

$\mu\left(G_{1}\right)=\mu\left(G_{2}\right)=2^{2} \cdot 1^{2}=4, \quad \delta\left(G_{1}\right)=\delta\left(G_{2}\right)=(2 \cdot 1-1)+(1 \cdot 2-1)=2$,
$\mu\left(G_{3}\right)=2^{2} \cdot 1^{2} \cdot 2^{2}=16, \quad \delta\left(G_{3}\right)=(2 \cdot 1-1)+(1 \cdot 2-1)+(2 \cdot 1-1)=3$.

Definitions by example

$G_{2}=\left(G_{1}\right)_{(3)}$, since G_{2} is obtained by shifting G_{1} three units to the right.

$$
\operatorname{maxv}\left(G_{3}\right)=6, \quad \operatorname{minv}\left(G_{3}\right)=3
$$

G_{1} is a template because $\operatorname{minv}\left(G_{1}\right)=0$ and we cannot "cut" G_{1} into two nonempty subgraphs.
G_{2} is a shifted template, and G_{3} is not a shifted template.

Examples of long-edge graphs

G_{2}

G_{3}

$\mu\left(G_{1}\right)=\mu\left(G_{2}\right)=2^{2} \cdot 1^{2}=4, \quad \delta\left(G_{1}\right)=\delta\left(G_{2}\right)=(2 \cdot 1-1)+(1 \cdot 2-1)=2$,
$\mu\left(G_{3}\right)=2^{2} \cdot 1^{2} \cdot 2^{2}=16, \quad \delta\left(G_{3}\right)=(2 \cdot 1-1)+(1 \cdot 2-1)+(2 \cdot 1-1)=3$.
Definitions by example
$G_{2}=\left(G_{1}\right)_{(3)}$, since G_{2} is obtained by shifting G_{1} three units to the right.

$$
\operatorname{maxv}\left(G_{3}\right)=6, \quad \operatorname{minv}\left(G_{3}\right)=3
$$

G_{1} is a template because $\operatorname{minv}\left(G_{1}\right)=0$ and we cannot "cut" G_{1} into two nonempty subgraphs.
G_{2} is a shifted template, and G_{3} is not a shifted template.
Observation Any long-edge graph can be decomposed into shifted templates.

β-allowable

Definition. Let G be a long-edge graph with associated weight function
ρ. For each j, we define

$$
\lambda_{j}(G)=\text { sum of the weight of all edges over }[j-1, j]
$$

Let $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{M+1}\right) \in \mathbb{Z}_{\geq 0}^{M+1}$ (where $M \geq 0$). We say G is β allowable if $\operatorname{maxv}(G) \leq M+1$ and $\beta_{j} \geq \lambda_{j}(G)$ for each j.
Example

G_{2}

$$
\lambda_{1}\left(G_{1}\right)=3, \quad \lambda_{2}\left(G_{1}\right)=1, \quad \text { and } \quad \lambda_{j}\left(G_{1}\right)=0 \text { for any } j \geq 3
$$

Hence, G_{1} is β-allowable if and only if $M \geq 1, \beta_{1} \geq 3$ and $\beta_{2} \geq 1$.

$$
\lambda_{4}\left(G_{2}\right)=3, \quad \lambda_{5}\left(G_{2}\right)=1, \quad \text { and } \quad \lambda_{j}\left(G_{2}\right)=0 \text { for any } j \neq 4,5
$$

G_{2} is β-allowable if and only if $M \geq 4, \beta_{4} \geq 3$ and $\beta_{5} \geq 1$.

Strictly β-allowable

Definition. A long-edge graph G is strictly β-allowable if it satisfies the following conditions:
a) G is β-allowable.
b) Any edge that is incident to the vertex 0 has weight 1 .
c) Any edge that is incident to the vertex $M+1$ has weight 1 .

Example

G_{1} is never strictly β-allowable.
G_{2} is strictly β-allowable if and only if it is β-allowable.

Strictly β-allowable

Definition. A long-edge graph G is strictly β-allowable if it satisfies the following conditions:
a) G is β-allowable.
b) Any edge that is incident to the vertex 0 has weight 1 .
c) Any edge that is incident to the vertex $M+1$ has weight 1 .

Example

G_{1} is never strictly β-allowable.
G_{2} is strictly β-allowable if and only if it is β-allowable.
Observation A long-edge graph is simultaneously β-allowable and strictly β-allowable most of the time except for some "boundary" conditions.

Extended graph

Definition. Suppose G is β-allowable. We create a new $\operatorname{graph}^{\operatorname{ext}}{ }_{\beta}(G)$ by adding $\beta_{j}-\lambda_{j}(G)$ unweighted edges connecting vertices $j-1$ and j for each $1 \leq j \leq M+1$.

Example G

$$
\lambda_{1}(G)=4, \quad \text { and } \quad \lambda_{j}(G)=0 \text { for any } j \geq 2, .
$$

G is β-allowable if and only if $\beta_{1} \geq 4$, in which case we construct $\operatorname{ext}_{\beta}(G)$ as above.

Extended graph

Definition. Suppose G is β-allowable. We create a new $\operatorname{graph}^{\operatorname{ext}_{\beta}(G) \text { by }}$ adding $\beta_{j}-\lambda_{j}(G)$ unweighted edges connecting vertices $j-1$ and j for each $1 \leq j \leq M+1$.

Example

$$
\lambda_{1}(G)=4, \quad \text { and } \quad \lambda_{j}(G)=0 \text { for any } j \geq 2, .
$$

G is β-allowable if and only if $\beta_{1} \geq 4$, in which case we construct $\operatorname{ext}_{\beta}(G)$ as above.

$$
P_{\beta}(G) \text { and } P_{\beta}^{s}(G)
$$

Definition. Suppose G is β-allowable. A β-extended ordering of G is a total ordering of the vertices and edges of $\operatorname{ext}_{\beta}(G)$ satisfying the following:
a) The ordering extends the natural ordering of the vertices $\mathbb{Z}_{\geq 0}$ of $\operatorname{ext}_{\beta}(G)$.
b) For any edge $\{a, b\}$, its position has to be between a and b.

Remark. When we construct a β-extended ordering, two edges are considered to be indistinguishable if they have the same endpoints and are of same weight.

$$
P_{\beta}(G) \text { and } P_{\beta}^{s}(G)
$$

Definition. Suppose G is β-allowable. A β-extended ordering of G is a total ordering of the vertices and edges of $\operatorname{ext}_{\beta}(G)$ satisfying the following:
a) The ordering extends the natural ordering of the vertices $\mathbb{Z}_{\geq 0}$ of $\operatorname{ext}_{\beta}(G)$.
b) For any edge $\{a, b\}$, its position has to be between a and b.

Remark. When we construct a β-extended ordering, two edges are considered to be indistinguishable if they have the same endpoints and are of same weight.

For any long-edge graph G, we define

$$
\begin{gathered}
P_{\beta}(G)= \begin{cases}\#(\beta \text {-extended orderings of } G) & \text { if } G \text { is } \beta \text {-allowable; } \\
0 & \text { otherwise }\end{cases} \\
P_{\beta}^{s}(G)= \begin{cases}P_{\beta}(G) & \text { if } G \text { is strictly } \beta \text {-allowable } \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

$$
P_{\beta}(G) \text { and } P_{\beta}^{s}(G)(\text { cont'd })
$$

Example

Recall that G is β-allowable if and only if $\beta_{1} \geq 4$.
Suppose $\beta_{1} \geq 4$. Then $\operatorname{ext}_{\beta}(G)$ have

- vertices $0,1,2, \ldots$,
- 2 edges connecting vertices 0 and 1 of weight 2 which we denote by e, e, and
- $\beta_{1}-4$ unweighted edges also connecting vertices 0 and 1 which we denote by $\underbrace{u, u, \ldots, u}_{\beta_{1}-4}$.

$$
P_{\beta}(G) \text { and } P_{\beta}^{s}(G)(\text { cont'd })
$$

Example

Hence, when $\beta_{1} \geq 4$, a β-extended ordering of G should look like

$$
0, u, \cdots, u, e, u, \cdots, u, e, u, \cdots, u, 1,2,3,4, \ldots
$$

Therefore,

$$
P_{\beta}(G)= \begin{cases}\left({ }^{\beta_{1}-4+2}{ }_{2}\right)=\left({ }^{\beta_{1}-2}\right) & \text { if } \beta_{1} \geq 4 \\ 0 & \text { otherwise }\end{cases}
$$

Finally,

$$
P_{\beta}^{s}(G)=0,
$$

since G is never strictly β-allowable.

Fomin-Mikhalkin's formula

Theorem (Brugallé-Mikhalkin, Fomin-Mikhalkin). The classical Severi degree $N^{d, \delta}$ is given by

$$
N^{d, \delta}=\sum_{G: \delta(G)=\delta} \mu(G) P_{\mathbf{v}(d)}^{s}(G)
$$

where

$$
\mathbf{v}(d):=(0,1,2, \ldots, d), \quad \forall d \in \mathbb{Z}_{>0}
$$

Fomin-Mikhalkin's formula

Theorem (Brugallé-Mikhalkin, Fomin-Mikhalkin). The classical Severi degree $N^{d, \delta}$ is given by

$$
N^{d, \delta}=\sum_{G: \delta(G)=\delta} \mu(G) P_{\mathbf{v}(d)}^{s}(G),
$$

where

$$
\mathbf{v}(d):=(0,1,2, \ldots, d), \quad \forall d \in \mathbb{Z}_{>0}
$$

Logarithmic version
Recall that $Q^{d, \delta}$ is the logarithmic version $N^{d, \delta}$. We define $\Phi_{\beta}(G)$ and $\Phi_{\beta}^{s}(G)$ be the logarithmic version of $P_{\beta}(G)$ and $P_{\beta}^{s}(G)$, respectively. Then we obtain the logarithmic version of Fomin-Mikhalkin's formula:

$$
Q^{d, \delta}=\sum_{G: \delta(G)=\delta} \mu(G) \Phi_{\mathbf{v}(d)}^{s}(G)
$$

Fomin-Mikhalkin's formula

Theorem (Brugallé-Mikhalkin, Fomin-Mikhalkin). The classical Severi degree $N^{d, \delta}$ is given by

$$
N^{d, \delta}=\sum_{G: \delta(G)=\delta} \mu(G) P_{\mathbf{v}(d)}^{s}(G),
$$

where

$$
\mathbf{v}(d):=(0,1,2, \ldots, d), \quad \forall d \in \mathbb{Z}_{>0}
$$

Logarithmic version
Recall that $Q^{d, \delta}$ is the logarithmic version $N^{d, \delta}$. We define $\Phi_{\beta}(G)$ and $\Phi_{\beta}^{s}(G)$ be the logarithmic version of $P_{\beta}(G)$ and $P_{\beta}^{s}(G)$, respectively. Then we obtain the logarithmic version of Fomin-Mikhalkin's formula:

$$
Q^{d, \delta}=\sum_{G: \delta(G)=\delta} \mu(G) \Phi_{\mathbf{v}(d)}^{s}(G)
$$

Our original motivation was to give a combinatorial proof for the result that $Q^{d, \delta}$ is given by quadratic polynomial, for sufficiently large d.

The Vanishing Lemma

Recall that among the three graphs in the figure,

G_{2}

G_{3}

G_{1} and G_{2} are shifted templates, and G_{3} is not a shifted template.
Lemma (L.). Suppose G is not a shifted template. Then

$$
\Phi_{\beta}^{s}(G)=0
$$

The Vanishing Lemma

Recall that among the three graphs in the figure,
G_{1}

G_{2}

G_{3}

G_{1} and G_{2} are shifted templates, and G_{3} is not a shifted template.
Lemma (L.). Suppose G is not a shifted template. Then

$$
\Phi_{\beta}^{s}(G)=0
$$

Corollary (Block-Colley-Kennedy, L.). Suppose G is not a shifted template. Then $\Phi_{\mathbf{v}(d)}^{s}(G)=0$.

The Vanishing Lemma

Recall that among the three graphs in the figure,

G_{2}

G_{3}

G_{1} and G_{2} are shifted templates, and G_{3} is not a shifted template. Lemma (L.). Suppose G is not a shifted template. Then

$$
\Phi_{\beta}^{s}(G)=0
$$

Corollary (Block-Colley-Kennedy, L.). Suppose G is not a shifted template. Then $\Phi_{\mathbf{v}(d)}^{s}(G)=0$.

Applying the corollary, we get

$$
Q^{d, \delta}=\sum_{G: \delta(G)=\delta} \mu(G) \Phi_{\mathbf{v}(d)}^{s}(G)=\sum_{\text {template } \Gamma: \delta(\Gamma)=\delta} \mu(\Gamma) \sum_{k \geq 0} \Phi_{\mathbf{v}(d)}^{s}\left(\Gamma_{(k)}\right),
$$

The Linearity Theorem

Theorem (L.). Suppose G is a long-edge graph satisfying maxv $(G) \leq M+1$. Then for any $\beta=\left(\beta_{1}, \ldots, \beta_{M+1}\right)$ satisfying $\beta_{j} \geq \bar{\lambda}_{j}(G)$ for all j, the values of $\Phi_{\beta}(G)$ are given by a linear multivariate function in β.

Corollary (Block-Colley-Kennedy, L.). Suppose G is a long-edge graph. Then for sufficiently large k (depending on G), and suffciently large d (depending on G and k), $\Phi_{\mathbf{v}(d)}\left(G_{(k)}\right)$ is a linear function in k.

Quadraticity of $Q^{d, \delta}$

Sketch of Proof. We already show

$$
Q^{d, \delta}=\sum_{\text {template } \Gamma: \delta(\Gamma)=\delta} \mu(\Gamma) \sum_{k \geq 0} \Phi_{\mathbf{v}(d)}^{s}\left(\Gamma_{(k)}\right) .
$$

Then the conclusion follows from the following points:

- There are finitely many templates of a given cogenus δ.

Quadraticity of $Q^{d, \delta}$

Sketch of Proof. We already show

$$
Q^{d, \delta}=\sum_{\text {template } \Gamma: \delta(\Gamma)=\delta} \mu(\Gamma) \sum_{k \geq 0} \Phi_{\mathbf{v}(d)}^{s}\left(\Gamma_{(k)}\right)
$$

Then the conclusion follows from the following points:

- There are finitely many templates of a given cogenus δ.
- For fixed d, the second summation has finitely many terms. In fact, we were able to show that the second summation becomes

$$
\sum_{k=0}^{d+\epsilon_{1}(\Gamma)-l(\Gamma)} \Phi_{\mathbf{v}(d)}^{s}\left(\Gamma_{(k)}\right)=\sum_{k=1}^{d+\epsilon_{1}(\Gamma)-l(\Gamma)} \Phi_{\mathbf{v}(d)}\left(\Gamma_{(k)}\right) .
$$

Quadraticity of $Q^{d, \delta}$

Sketch of Proof. We already show

$$
Q^{d, \delta}=\sum_{\text {template } \Gamma: \delta(\Gamma)=\delta} \mu(\Gamma) \sum_{k \geq 0} \Phi_{\mathbf{v}(d)}^{s}\left(\Gamma_{(k)}\right)
$$

Then the conclusion follows from the following points:

- There are finitely many templates of a given cogenus δ.
- For fixed d, the second summation has finitely many terms. In fact, we were able to show that the second summation becomes

$$
\sum_{k=0}^{d+\epsilon_{1}(\Gamma)-l(\Gamma)} \Phi_{\mathbf{v}(d)}^{s}\left(\Gamma_{(k)}\right)=\sum_{k=1}^{d+\epsilon_{1}(\Gamma)-l(\Gamma)} \Phi_{\mathbf{v}(d)}\left(\Gamma_{(k)}\right) .
$$

- It follows from the linearity corollary that except for first several terms, all other terms are a linear function in k.

We can do more

- Recover the threshold bound $d \geq \delta$ for the polynomiality of $N^{d, \delta}$ obtained by Block.
- and ...

PART III:

Severi degrees on toric surfaces

Summary: We consider generalized Severi degrees on certain toric surfaces. By analyzing Ardila-Block's formula and applying the results from PART II, we obtain universality results that has close connection to Göttsche-Yau-Zaslow formula.

This is joint work with Brian Osserman.

Severi degrees $N^{\Delta, \delta}$

Recall that $N^{\delta}(Y, \mathscr{L})$ is the generalized Severi degree that counts the number of δ-nodal curves in \mathscr{L} passing through $\operatorname{dim}|\mathscr{L}|-\delta$ points in general position, and $Q^{\delta}(Y, \mathscr{L})$ is its logarithmic version.

Given a lattice polygon Δ, let $Y(\Delta)$ be associated toric surface, and $\mathscr{L}(\Delta)$ be the line bundle, and set

$$
N^{\Delta, \delta}:=N^{\delta}(Y(\Delta), \mathscr{L}(\Delta)), \quad \text { and } \quad Q^{\Delta, \delta}:=Q^{\delta}(Y(\Delta), \mathscr{L}(\Delta))
$$

Severi degrees $N^{\Delta, \delta}$

Recall that $N^{\delta}(Y, \mathscr{L})$ is the generalized Severi degree that counts the number of δ-nodal curves in \mathscr{L} passing through $\operatorname{dim}|\mathscr{L}|-\delta$ points in general position, and $Q^{\delta}(Y, \mathscr{L})$ is its logarithmic version.

Given a lattice polygon Δ, let $Y(\Delta)$ be associated toric surface, and $\mathscr{L}(\Delta)$ be the line bundle, and set

$$
N^{\Delta, \delta}:=N^{\delta}(Y(\Delta), \mathscr{L}(\Delta)), \quad \text { and } \quad Q^{\Delta, \delta}:=Q^{\delta}(Y(\Delta), \mathscr{L}(\Delta)) .
$$

Recall that Fomin-Mikhalkin's formula for $N^{d, \delta}$ was derived from Bru-gallé-Mikhalkin's enumerative formula for Severi degrees using labeled floor diagrams.

In fact, the formula introduced by Brugallé and Mikhalkin works not only for $N^{d, \delta}$, but also for Severi degrees $N^{\Delta, \delta}$ arising from h-transverse polygons.

h-transverse polygon

Definition. A polygon Δ is h-transverse if all its normal vectors have infinite or integer slope.

If v is a vertex of Δ, we $\operatorname{define} \operatorname{det}(v)$ to be $\left|\operatorname{det}\left(w_{1}, w_{2}\right)\right|$, where w_{1} and w_{2} are primitive integer normal vectors to the edges adjacent to v.

Example

The normals of the top and bottom edges have slopes ∞ and $-\infty$.
The normals of the four edges on the left have slopes $-3,-1,0$ and 1 .
The normals of the three edges on the right have slopes 2,0 and -2 .

Ardila-Block's work

In parallel to Fomin-Mikhalkin's work, Ardila and Block reformulate Brugallé-Mikhalkin's formula for $N^{\Delta, \delta}$ where Δ is an h-transverse polygon, and obtain polynomiality result.

Theorem (Brugallé-Mikhalkin, Ardila-Block). For any h-transverse polygon Δ and any $\delta \geq 0$, the Severi degree $N^{\Delta, \delta}$ is given by

$$
N^{\Delta, \delta}=\sum_{\Delta^{\prime}} \sum_{G} \mu(G) P_{\beta\left(\Delta^{\prime}\right)}^{s}(G)
$$

where the first summation is over all "reorderings" Δ ' of Δ satisfying $\delta\left(\Delta^{\prime}\right) \leq \delta$, and the second summation is over all long-edge graphs G with $\delta(G)=\delta-\delta\left(\Delta^{\prime}\right)$.

Ardila-Block's work (cont'd)

Ardila and Block encode each h-transverse polygon Δ with two vectors c and d.

Example

Write

$$
\Delta=\Delta(\mathbf{c}, \mathbf{d}) .
$$

Ardila-Block's work (cont'd)

Theorem (Ardila-Block). Fixing δ and the number of edges on the left and right of Δ.

- For fixed \mathbf{c}, the number $N^{\Delta, \delta}$ is given by a polynomial in \mathbf{d} for any choice of \mathbf{d} such that the heights of vertices of $\Delta(\mathbf{c}, \mathbf{d})$ are sufficiently spread out relative to δ.
- The number $N^{\Delta, \delta}$ is given by a polynomial in \mathbf{c} and \mathbf{d} for any \mathbf{c} that is sufficiently spread out, any choice of \mathbf{d} such that the heights of vertices of $\Delta(\mathbf{c}, \mathbf{d})$ are sufficiently spread out relative to δ.

Comparing with Tzeng's theorem

(i) Advantage: Treats many singular surfaces when Tzeng's theorem only covers smooth surfaces.
(ii) Disadvantage: The universality is not nearly as strong:

- need to fix the number of edges on the left and right;
- infinite slopes are treated differently;
- the number of variables grows with the number of edges;
- no results like the Göttsche-Yau-Zaslow formula.

Strongly h-transverse

Recall that Ardila-Block's formula

$$
N^{\Delta, \delta}=\sum_{\Delta^{\prime}} \sum_{G} \mu(G) P_{\beta\left(\Delta^{\prime}\right)}^{s}(G),
$$

is very similar to Fomin-Mikhalkin's formula. Thus, naturally we consider the logarithmic version of it:

$$
Q^{\Delta, \delta}=\sum_{\Delta^{\prime}} \sum_{G} \mu(G) \Phi_{\beta\left(\Delta^{\prime}\right)}^{s}(G),
$$

By applying the Vanishing Lemma and the Linearity Theorem, we are able to give a formula for $Q^{\Delta, \delta}$.

Strongly h-transverse

Recall that Ardila-Block's formula

$$
N^{\Delta, \delta}=\sum_{\Delta^{\prime}} \sum_{G} \mu(G) P_{\beta\left(\Delta^{\prime}\right)}^{s}(G),
$$

is very similar to Fomin-Mikhalkin's formula. Thus, naturally we consider the logarithmic version of it:

$$
Q^{\Delta, \delta}=\sum_{\Delta^{\prime}} \sum_{G} \mu(G) \Phi_{\beta\left(\Delta^{\prime}\right)}^{s}(G),
$$

By applying the Vanishing Lemma and the Linearity Theorem, we are able to give a formula for $Q^{\Delta, \delta}$. The result is particularly nice when Δ is "strongly h-transverse".
Definition. We say an h-transverse polygon Δ is strongly h-transverse if either there is a non-zero horizontal edge at the top of Δ, or the vertex v at the top has $\operatorname{det}(v) \in\{1,2\}$, and the same holds for the bottom of Δ.

Strongly h-transverse

Recall that Ardila-Block's formula

$$
N^{\Delta, \delta}=\sum_{\Delta^{\prime}} \sum_{G} \mu(G) P_{\beta\left(\Delta^{\prime}\right)}^{s}(G),
$$

is very similar to Fomin-Mikhalkin's formula. Thus, naturally we consider the logarithmic version of it:

$$
Q^{\Delta, \delta}=\sum_{\Delta^{\prime}} \sum_{G} \mu(G) \Phi_{\beta\left(\Delta^{\prime}\right)}^{s}(G),
$$

By applying the Vanishing Lemma and the Linearity Theorem, we are able to give a formula for $Q^{\Delta, \delta}$. The result is particularly nice when Δ is "strongly h-transverse".
Definition. We say an h-transverse polygon Δ is strongly h-transverse if either there is a non-zero horizontal edge at the top of Δ, or the vertex v at the top has $\operatorname{det}(v) \in\{1,2\}$, and the same holds for the bottom of Δ.

It turns out that an h-transverse polygon Δ is strongly h-transverse if and only if $Y(\Delta)$ is Gorenstein.

Main result

Recall the following corollary to Tzeng's theorem:
Corollary. For any fixed δ, there is a linear function $Q_{\delta}(w, x, y, z)$ such that

$$
Q^{\delta}(Y, \mathscr{L})=Q_{\delta}\left(\mathscr{L}^{2}, \mathscr{L} \cdot \mathscr{K}, \mathscr{K}^{2}, c_{2}\right)
$$

whenever Y is smooth and \mathscr{L} is sufficiently ample, where \mathscr{K} and c_{2} are the canonical class and second Chern class of Y, respectively.

Main result

Recall the following corollary to Tzeng's theorem:
Corollary. For any fixed δ, there is a linear function $Q_{\delta}(w, x, y, z)$ such that

$$
Q^{\delta}(Y, \mathscr{L})=Q_{\delta}\left(\mathscr{L}^{2}, \mathscr{L} \cdot \mathscr{K}, \mathscr{K}^{2}, c_{2}\right)
$$

whenever Y is smooth and \mathscr{L} is sufficiently ample, where \mathscr{K} and c_{2} are the canonical class and second Chern class of Y, respectively.

Theorem (L.-Osserman). Fix $\delta \geq 1$. Then there exist constants $E(\delta)$ and $E_{i}(\delta)$ for $i=1, \ldots, \delta-1$ such that if Δ is a strongly h-transverse polygon with all edges having length at least δ, then

$$
Q^{\Delta, \delta}=Q_{\delta}\left(\mathscr{L}(\Delta)^{2}, \mathscr{L}(\Delta) \cdot \mathscr{K}, \mathscr{K}^{2}, \tilde{c}_{2}\right)+E(\delta) S+\sum_{i=1}^{\delta-1} E_{i}(\delta) S_{i},
$$

where \mathscr{K} is the canonical line bundle on $Y(\Delta), S_{i}$ is the number of singularities of $Y(\Delta)$ of Milnor number $i, \tilde{c}_{2}=c_{2}(Y(\Delta))+\sum_{i \geq 1} i S_{i}$, and $S=\sum_{i \geq 1}(i+1) S_{i}$.

Connection to Tzeng's Theorem

Theorem (L.-Osserman). We have the following:
(i) For every fixed δ, there exists a universal polynomial $T_{\delta}\left(w, x, y, z ; s, s_{1}, \ldots, s_{\delta-1}\right)$ such that

$$
N^{\Delta, \delta}=T_{\delta}\left(\mathscr{L}^{2}, \mathscr{L} \cdot \mathscr{K}, \mathscr{K}^{2}, \tilde{c}_{2} ; S, S_{1}, \ldots, S_{\delta-1}\right)
$$

whenever Δ is a strongly h-transverse polygon with all edges having length at least δ.
(ii) Moreover,

$$
\begin{aligned}
& \sum_{\delta \geq 0} T_{\delta}\left(\mathscr{L}^{2}, \mathscr{L} \cdot \mathscr{K}, \mathscr{K}^{2}, \tilde{c}_{2} ; S, S_{1}, S_{2}, \ldots\right)\left(D G_{2}(\tau)\right)^{\delta} \\
& \quad=\frac{\left(D G_{2}(\tau) / q\right)^{\chi(\mathscr{L})} B_{1}(q)^{\mathscr{K}^{2}} B_{2}(q)^{\mathscr{L} \cdot \mathscr{K}}}{\left(\Delta(\tau) D^{2} G_{2}(\tau) / q^{2}\right)^{\chi\left(\mathcal{O}_{S}\right) / 2}} \mathcal{P}(q)^{-S} \prod_{i \geq 2} \mathcal{P}\left(q^{i}\right)^{S_{i-1}}
\end{aligned}
$$

where $\mathcal{P}(x)=\sum_{n \geq 0} p(n) x^{n}$ is the generating function for partitions.

Formulas for $B_{1}(q)$ and $B_{2}(q)$

Corollary. we have

$$
\begin{aligned}
& B_{1}(q)=(\mathcal{P}(q))^{-1} \cdot \exp \left(-\sum_{\delta \geq 1} D(\delta)\left(D G_{2}(q)\right)^{\delta}\right), \\
& B_{2}(q)=\exp \left(\sum_{\delta \geq 1}(A(\delta)-L(\delta))\left(D G_{2}(q)\right)^{\delta}\right) .
\end{aligned}
$$

Here

$$
\begin{aligned}
A(\delta) & =\frac{1}{2} \sum \mu(\Gamma) \zeta^{0}(\Gamma), \\
L(\delta) & :=-\frac{1}{2} \sum \mu(\Gamma) \zeta^{0}(\Gamma)\left(\ell(\Gamma)-\epsilon_{0}(\Gamma)-\epsilon_{1}(\Gamma)\right), \\
D(\delta) & :=-\sum \mu(\Gamma)\left(\zeta^{2}(\Gamma)+\zeta^{1}(\Gamma)\left(1-\epsilon_{0}(\Gamma)\right)\right),
\end{aligned}
$$

where all summations are over templates of cogenus δ.

