A problem coming from group theory

Suho Oh

Texas State University
May 7, 2016

Original Problem

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
a_{2,1} & \cdots & a_{2, n-1} & a_{2, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

Original Problem

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
a_{2,1} & \cdots & a_{2, n-1} & a_{2, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- For each i, j, a set $B_{i, j}$ is an arbitrary set of cardinality n.
- $a_{i, j} \in B_{i, j}$.

Original Problem

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
a_{2,1} & \cdots & a_{2, n-1} & a_{2, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- For each i, j, a set $B_{i, j}$ is an arbitrary set of cardinality n.
- $a_{i, j} \in B_{i, j}$.
- (first $n-1$ columns) $a_{i, 1}, \cdots, a_{i, n-1}$ are mutually distinct.

Original Problem

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
a_{2,1} & \cdots & a_{2, n-1} & a_{2, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- For each i, j, a set $B_{i, j}$ is an arbitrary set of cardinality n.
- $a_{i, j} \in B_{i, j}$.
- (first $n-1$ columns) $a_{i, 1}, \cdots, a_{i, n-1}$ are mutually distinct.
- (afterwards) $a_{i, t} \notin\left\{a_{i, 1}, \cdots, a_{i, n-2}\right\}$.

Original Problem

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
a_{2,1} & \cdots & a_{2, n-1} & a_{2, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- For each i, j, a set $B_{i, j}$ is an arbitrary set of cardinality n.
- $a_{i, j} \in B_{i, j}$.
- (first $n-1$ columns) $a_{i, 1}, \cdots, a_{i, n-1}$ are mutually distinct.
- (afterwards) $a_{i, t} \notin\left\{a_{i, 1}, \cdots, a_{i, n-2}\right\}$.
- (row sets distinct at any point) $\left\{a_{i, 1}, \cdots, a_{i, k}\right\} \neq\left\{a_{j, 1}, \cdots, a_{j, k}\right\}$

Original Problem

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
a_{2,1} & \cdots & a_{2, n-1} & a_{2, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- For each i, j, a set $B_{i, j}$ is an arbitrary set of cardinality n.
- $a_{i, j} \in B_{i, j}$.
- (first $n-1$ columns) $a_{i, 1}, \cdots, a_{i, n-1}$ are mutually distinct.
- (afterwards) $a_{i, t} \notin\left\{a_{i, 1}, \cdots, a_{i, n-2}\right\}$.
- (row sets distinct at any point) $\left\{a_{i, 1}, \cdots, a_{i, k}\right\} \neq\left\{a_{j, 1}, \cdots, a_{j, k}\right\}$
- Easy when all $B_{i, j}=[n]$. Try!

Example

When $n=5$, all $B_{i, j}=\{1,2,3,4,5\}$

Example

When $n=5$, all $B_{i, j}=\{1,2,3,4,5\}$

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 4 & 4 & \cdots \\
2 & 3 & 4 & 5 & 5 & 5 & \cdots \\
3 & 4 & 5 & 1 & 1 & 1 & \cdots \\
4 & 5 & 1 & 2 & 2 & 2 & \cdots \\
5 & 1 & 2 & 3 & 3 & 3 & \cdots
\end{array}
$$

- When all $B_{i, j}$ are the same, easy!

Example

When $n=5$, all $B_{i, j}=\{1,2,3,4,5\}$

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 4 & 4 & \cdots \\
2 & 3 & 4 & 5 & 5 & 5 & \cdots \\
3 & 4 & 5 & 1 & 1 & 1 & \cdots \\
4 & 5 & 1 & 2 & 2 & 2 & \cdots \\
5 & 1 & 2 & 3 & 3 & 3 & \cdots
\end{array}
$$

- When all $B_{i, j}$ are the same, easy!
- Observe : First $n-1$ columns and the columns after behave slightly differently.
- If all $B_{i, j}$ are different, also easy!

Example

When $n=5$, all $B_{i, j}=\{1,2,3,4,5\}$

1	2	3	4	4	4	\cdots
2	3	4	5	5	5	\cdots
3	4	5	1	1	1	\cdots
4	5	1	2	2	2	\cdots
5	1	2	3	3	3	\cdots

- When all $B_{i, j}$ are the same, easy!
- Observe : First $n-1$ columns and the columns after behave slightly differently.
- If all $B_{i, j}$ are different, also easy!
- Harder for other cases!

Example

When $n=5$, all $B_{i, j}=\{1,2,3,4,5\}$

1	2	3	4	4	4	\cdots
2	3	4	5	5	5	\cdots
3	4	5	1	1	1	\cdots
4	5	1	2	2	2	\cdots
5	1	2	3	3	3	\cdots

- When all $B_{i, j}$ are the same, easy!
- Observe : First $n-1$ columns and the columns after behave slightly differently.
- If all $B_{i, j}$ are different, also easy!
- Harder for other cases!
- Number of columns? Can we just think of finite cases?

Example

When $n=5$, all $B_{i, j}=\{1,2,3,4,5\}$

1	2	3	4	4	4	\cdots
2	3	4	5	5	5	\cdots
3	4	5	1	1	1	\cdots
4	5	1	2	2	2	\cdots
5	1	2	3	3	3	\cdots

- When all $B_{i, j}$ are the same, easy!
- Observe : First $n-1$ columns and the columns after behave slightly differently.
- If all $B_{i, j}$ are different, also easy!
- Harder for other cases!
- Number of columns? Can we just think of finite cases?
- Konig Lemma: G a connected graph with infinitely many vertices, where degree is finite, G contains an infinitely long simple path.

Motivation

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
a_{2,1} & \cdots & a_{2, n-1} & a_{2, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

Motivation

- G group acting on G-module V.

Motivation

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.

Motivation

$a_{1,1}$	\cdots	$a_{1, n-1}$	$a_{1, n}$	\cdots
$a_{2,1}$	\cdots	$a_{2, n-1}$	$a_{2, n}$	\cdots
\vdots	\cdots	\cdots	\cdots	\cdots
$a_{n, 1}$	\cdots	\cdots	$a_{n, n}$	\cdots

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.
- (Conjecture by Moreto, Jaikin-Zapairin) rk(G) is bounded linearly by $n(G, V)$.

Motivation

$a_{1,1}$	\cdots	$a_{1, n-1}$	$a_{1, n}$	\cdots
$a_{2,1}$	\cdots	$a_{2, n-1}$	$a_{2, n}$	\cdots
\vdots	\cdots	\cdots	\cdots	\cdots
$a_{n, 1}$	\cdots	\cdots	$a_{n, n}$	\cdots

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.
- (Conjecture by Moreto, Jaikin-Zapairin) rk(G) is bounded linearly by $n(G, V)$.
- $d l(G)$: derived length of a solvable group.

Motivation

$a_{1,1}$	\cdots	$a_{1, n-1}$	$a_{1, n}$	\cdots
$a_{2,1}$	\cdots	$a_{2, n-1}$	$a_{2, n}$	\cdots
\vdots	\cdots	\cdots	\cdots	\cdots
$a_{n, 1}$	\cdots	\cdots	$a_{n, n}$	\cdots

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.
- (Conjecture by Moreto, Jaikin-Zapairin) rk(G) is bounded linearly by $n(G, V)$.
- $d l(G)$: derived length of a solvable group.
- (Keller) : $d l(G) \leq 24 \log n(G, V)+364$

Motivation

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
a_{2,1} & \cdots & a_{2, n-1} & a_{2, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.
- (Conjecture by Moreto, Jaikin-Zapairin) rk(G) is bounded linearly by $n(G, V)$.
- $d l(G)$: derived length of a solvable group.
- (Keller) : dl($G) \leq 24 \log n(G, V)+364$
- (Conjectured by Keller) : $d l(G) \leq 6 \log n(G, V)+6$ (Follows from the problem for $n=6$)

Motivation

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
a_{2,1} & \cdots & a_{2, n-1} & a_{2, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- G group acting on G-module V.
- $n(G, V)$: number of orbit sizes of G on V.
- (Conjecture by Moreto, Jaikin-Zapairin) $r k(G)$ is bounded linearly by $n(G, V)$.
- $d l(G)$: derived length of a solvable group.
- (Keller) : dl($G) \leq 24 \log n(G, V)+364$
- (Conjectured by Keller) : $d l(G) \leq 6 \log n(G, V)+6$ (Follows from the problem for $n=6$)
- (Curtin O.) : Yup! Problem is true for any n.

Generalization

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

Generalization

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- (first $n-1$ columns) $a_{i, 1}, \cdots, a_{i, n-1}$ are mutually distinct.
- (*, afterwards) $a_{i, t} \notin\left\{a_{i, 1}, \cdots, a_{i, n-2}\right\}$.
- (row sets distinct at any point) $\left\{a_{i, 1}, \cdots, a_{i, k}\right\} \neq\left\{a_{j, 1}, \cdots, a_{j, k}\right\}$

Generalization

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- (first $n-1$ columns) $a_{i, 1}, \cdots, a_{i, n-1}$ are mutually distinct.
- (*, afterwards) $a_{i, t} \notin\left\{a_{i, 1}, \cdots, a_{i, n-2}\right\}$.
- (row sets distinct at any point) $\left\{a_{i, 1}, \cdots, a_{i, k}\right\} \neq\left\{a_{j, 1}, \cdots, a_{j, k}\right\}$
- Obervation : $a_{1, n-1}, a_{1, n}, a_{1, n+1}, \cdots$ each have at least two options to choose from, to obey (*)

Generalization

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- (first $n-1$ columns) $a_{i, 1}, \cdots, a_{i, n-1}$ are mutually distinct.
- (*, afterwards) $a_{i, t} \notin\left\{a_{i, 1}, \cdots, a_{i, n-2}\right\}$.
- (row sets distinct at any point) $\left\{a_{i, 1}, \cdots, a_{i, k}\right\} \neq\left\{a_{j, 1}, \cdots, a_{j, k}\right\}$
- Obervation : $a_{1, n-1}, a_{1, n}, a_{1, n+1}, \cdots$ each have at least two options to choose from, to obey (*)
- Those two options may have already appeared in the row set $\left\{a_{i, 1}, \cdots, a_{i, k}\right\}$. In terms of row sets, only consider when both are new.

Generalization

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- (first $n-1$ columns) $a_{i, 1}, \cdots, a_{i, n-1}$ are mutually distinct.
- (*, afterwards) $a_{i, t} \notin\left\{a_{i, 1}, \cdots, a_{i, n-2}\right\}$.
- (row sets distinct at any point) $\left\{a_{i, 1}, \cdots, a_{i, k}\right\} \neq\left\{a_{j, 1}, \cdots, a_{j, k}\right\}$
- Obervation : $a_{1, n-1}, a_{1, n}, a_{1, n+1}, \cdots$ each have at least two options to choose from, to obey (*)
- Those two options may have already appeared in the row set $\left\{a_{i, 1}, \cdots, a_{i, k}\right\}$. In terms of row sets, only consider when both are new.
- Ex: $1234 \mid 567$?, $B=\{1,2,3,4,5,8\}$ we choose 5 , row set is same $\{1,2,3,4,5,6,7\}$.

Generalization

$$
\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
a_{n, 1} & \cdots & \cdots & a_{n, n} & \cdots
\end{array}
$$

- (first $n-1$ columns) $a_{i, 1}, \cdots, a_{i, n-1}$ are mutually distinct.
- (*, afterwards) $a_{i, t} \notin\left\{a_{i, 1}, \cdots, a_{i, n-2}\right\}$.
- (row sets distinct at any point) $\left\{a_{i, 1}, \cdots, a_{i, k}\right\} \neq\left\{a_{j, 1}, \cdots, a_{j, k}\right\}$
- Obervation : $a_{1, n-1}, a_{1, n}, a_{1, n+1}, \cdots$ each have at least two options to choose from, to obey (*)
- Those two options may have already appeared in the row set $\left\{a_{i, 1}, \cdots, a_{i, k}\right\}$. In terms of row sets, only consider when both are new.
- Ex: $1234 \mid 567$?, $B=\{1,2,3,4,5,8\}$ we choose 5 , row set is same $\{1,2,3,4,5,6,7\}$.
- Ex: $1234 \mid 567$?, $B=\{1,2,3,4,8,9\}$ we choose 9 , row set is now $\{1,2,3,4,5,6,7,9\}$.

System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!

System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!
- Binary poset : Each node has two children below.

System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!
- Binary poset : Each node has two children below.
- Boolean lattice B_{n}, n-binary posets rooted at $1,2, \cdots, n$.

System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!
- Binary poset : Each node has two children below.
- Boolean lattice B_{n}, n-binary posets rooted at $1,2, \cdots, n$.
- Can you find a chain for each binary poset so that the chains are pairwise disjoint?

System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!
- Binary poset : Each node has two children below.
- Boolean lattice B_{n}, n-binary posets rooted at $1,2, \cdots, n$.
- Can you find a chain for each binary poset so that the chains are pairwise disjoint?
- ($n-1$)-partite graph. Hypergraph where edges are chains along the binary posets.

System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!
- Binary poset : Each node has two children below.
- Boolean lattice B_{n}, n-binary posets rooted at $1,2, \cdots, n$.
- Can you find a chain for each binary poset so that the chains are pairwise disjoint?
- ($n-1$)-partite graph. Hypergraph where edges are chains along the binary posets.
- Can you find a system of distinct representative for the given n hypergraphs?

System of distinct representative of n binary posets

- Growth of n-sets, where you are offered two options each time!
- Binary poset : Each node has two children below.
- Boolean lattice B_{n}, n-binary posets rooted at $1,2, \cdots, n$.
- Can you find a chain for each binary poset so that the chains are pairwise disjoint?
- ($n-1$)-partite graph. Hypergraph where edges are chains along the binary posets.
- Can you find a system of distinct representative for the given n hypergraphs?
- (Aharoni) Hall's theorem for hypergraphs... Not easy to use.

Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..

Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\left\{A_{1}=\{1\}, A_{2}=\{2\}, \cdots, A_{n}=\{n\}\right\}$.

Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\left\{A_{1}=\{1\}, A_{2}=\{2\}, \cdots, A_{n}=\{n\}\right\}$.
- Each turn, for each set A_{i}, adversary chooses 2 elements in $[n] \backslash A_{i}$.

Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\left\{A_{1}=\{1\}, A_{2}=\{2\}, \cdots, A_{n}=\{n\}\right\}$.
- Each turn, for each set A_{i}, adversary chooses 2 elements in $[n] \backslash A_{i}$.
- For each set, you must pick the correct element among the 2 choices so that all A_{i} 's are still mutually distinct!

Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\left\{A_{1}=\{1\}, A_{2}=\{2\}, \cdots, A_{n}=\{n\}\right\}$.
- Each turn, for each set A_{i}, adversary chooses 2 elements in $[n] \backslash A_{i}$.
- For each set, you must pick the correct element among the 2 choices so that all A_{i} 's are still mutually distinct!
- You want to keep growing until they have cardinality $n-1$.

Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\left\{A_{1}=\{1\}, A_{2}=\{2\}, \cdots, A_{n}=\{n\}\right\}$.
- Each turn, for each set A_{i}, adversary chooses 2 elements in $[n] \backslash A_{i}$.
- For each set, you must pick the correct element among the 2 choices so that all A_{i} 's are still mutually distinct!
- You want to keep growing until they have cardinality $n-1$.
- Ex: $A_{1}=\{1\}, A_{2}=\{2\}, A_{3}=\{3\}, A_{4}=\{4\}$. Adversary offers $\{2,3\},\{3,4\},\{4,1\},\{1,2\}$ each.

Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\left\{A_{1}=\{1\}, A_{2}=\{2\}, \cdots, A_{n}=\{n\}\right\}$.
- Each turn, for each set A_{i}, adversary chooses 2 elements in $[n] \backslash A_{i}$.
- For each set, you must pick the correct element among the 2 choices so that all A_{i} 's are still mutually distinct!
- You want to keep growing until they have cardinality $n-1$.
- Ex : $A_{1}=\{1\}, A_{2}=\{2\}, A_{3}=\{3\}, A_{4}=\{4\}$. Adversary offers $\{2,3\},\{3,4\},\{4,1\},\{1,2\}$ each.
- Ex: $A_{1}=\{1,2\}, A_{2}=\{2,3\}, A_{3}=\{3,4\}, A_{4}=\{4,1\}$. Adversary offers $\{3,4\},\{4,1\},\{1,2\},\{2,3\}$ each.

Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\left\{A_{1}=\{1\}, A_{2}=\{2\}, \cdots, A_{n}=\{n\}\right\}$.
- Each turn, for each set A_{i}, adversary chooses 2 elements in $[n] \backslash A_{i}$.
- For each set, you must pick the correct element among the 2 choices so that all A_{i} 's are still mutually distinct!
- You want to keep growing until they have cardinality $n-1$.
- Ex : $A_{1}=\{1\}, A_{2}=\{2\}, A_{3}=\{3\}, A_{4}=\{4\}$. Adversary offers $\{2,3\},\{3,4\},\{4,1\},\{1,2\}$ each.
- Ex: $A_{1}=\{1,2\}, A_{2}=\{2,3\}, A_{3}=\{3,4\}, A_{4}=\{4,1\}$. Adversary offers $\{3,4\},\{4,1\},\{1,2\},\{2,3\}$ each.
- Ex: $A_{1}=\{1,2,3\}, A_{2}=\{2,3,4\}, A_{3}=\{3,4,1\}, A_{4}=\{4,1,2\}$. Done!

Adversary game version of the problem

- If you can come up with a strategy that only requires you to look at one level at a time..
- You start with n sets $\left\{A_{1}=\{1\}, A_{2}=\{2\}, \cdots, A_{n}=\{n\}\right\}$.
- Each turn, for each set A_{i}, adversary chooses 2 elements in $[n] \backslash A_{i}$.
- For each set, you must pick the correct element among the 2 choices so that all A_{i} 's are still mutually distinct!
- You want to keep growing until they have cardinality $n-1$.
- Ex : $A_{1}=\{1\}, A_{2}=\{2\}, A_{3}=\{3\}, A_{4}=\{4\}$. Adversary offers $\{2,3\},\{3,4\},\{4,1\},\{1,2\}$ each.
- Ex: $A_{1}=\{1,2\}, A_{2}=\{2,3\}, A_{3}=\{3,4\}, A_{4}=\{4,1\}$. Adversary offers $\{3,4\},\{4,1\},\{1,2\},\{2,3\}$ each.
- Ex: $A_{1}=\{1,2,3\}, A_{2}=\{2,3,4\}, A_{3}=\{3,4,1\}, A_{4}=\{4,1,2\}$. Done!
- Can't be too crowded! Ex : 12345, 12346, 12347, 12356, 12367, offered 67, 57, 56, 47, 45.

Additional comments

Additional comments

- Generalized Hall : Given hypergraphs H_{1}, \cdots, H_{n}, when can you find $e_{i} \in H_{i}$'s such that they are pairwise disjoint?

Additional comments

- Generalized Hall : Given hypergraphs H_{1}, \cdots, H_{n}, when can you find $e_{i} \in H_{i}$'s such that they are pairwise disjoint?
- (Clean but is only sufficient) : For any $I \subseteq[n]$, there is a matching (set of disjoint edges) M_{l} in $G_{l}=\cup_{l} H_{l}$ which cannot be pinned (Not all edges of M_{l} are touched) by fewer than $|I|$ disjoint edges in G/.

Additional comments

- Generalized Hall : Given hypergraphs H_{1}, \cdots, H_{n}, when can you find $e_{i} \in H_{i}$'s such that they are pairwise disjoint?
- (Clean but is only sufficient) : For any $I \subseteq[n]$, there is a matching (set of disjoint edges) M_{l} in $G_{l}=\cup_{l} H_{l}$ which cannot be pinned (Not all edges of M_{I} are touched) by fewer than $|I|$ disjoint edges in G/.
- Sadly, this doesn't work even for cases like when all B's are the same!!

Additional comments

- Generalized Hall : Given hypergraphs H_{1}, \cdots, H_{n}, when can you find $e_{i} \in H_{i}$'s such that they are pairwise disjoint?
- (Clean but is only sufficient) : For any $I \subseteq[n]$, there is a matching (set of disjoint edges) M_{I} in $G_{I}=\cup_{I} H_{l}$ which cannot be pinned (Not all edges of M_{I} are touched) by fewer than $|I|$ disjoint edges in G/.
- Sadly, this doesn't work even for cases like when all B's are the same!!
- (Sufficient and necessary) : For each $I \subseteq[n]$, you can find a matching M_{l} in G_{l} such that M_{l} cannot be pinned by few than $|I|$ edges from $\cup_{J \subseteq I} M_{J}$.

Additional comments

- Generalized Hall : Given hypergraphs H_{1}, \cdots, H_{n}, when can you find $e_{i} \in H_{i}$'s such that they are pairwise disjoint?
- (Clean but is only sufficient) : For any $I \subseteq[n]$, there is a matching (set of disjoint edges) M_{I} in $G_{I}=\cup_{l} H_{l}$ which cannot be pinned (Not all edges of M_{I} are touched) by fewer than $|I|$ disjoint edges in G/.
- Sadly, this doesn't work even for cases like when all B's are the same!!
- (Sufficient and necessary) : For each $I \subseteq[n]$, you can find a matching M_{l} in G_{l} such that M_{l} cannot be pinned by few than $|I|$ edges from $\cup_{J \subseteq I} M_{J}$.
- For the adversary problem: we want to prevent the sets being too crowded. Try maintaining distance each step!

Additional comments

- Generalized Hall : Given hypergraphs H_{1}, \cdots, H_{n}, when can you find $e_{i} \in H_{i}$'s such that they are pairwise disjoint?
- (Clean but is only sufficient) : For any $I \subseteq[n]$, there is a matching (set of disjoint edges) M_{l} in $G_{l}=\cup_{l} H_{l}$ which cannot be pinned (Not all edges of M_{I} are touched) by fewer than $|I|$ disjoint edges in G/.
- Sadly, this doesn't work even for cases like when all B's are the same!!
- (Sufficient and necessary) : For each $I \subseteq[n]$, you can find a matching M_{l} in G_{l} such that M_{l} cannot be pinned by few than |I| edges from $\cup_{J \subseteq I} M_{J}$.
- For the adversary problem: we want to prevent the sets being too crowded. Try maintaining distance each step!
- Required condition : For each $I \subseteq[n]$, let $A_{i_{1}}, \cdots, A_{i_{k}}$ be the sets containing I in our collection. Than $\left|A_{i_{1}} \cup \cdots \cup A_{i_{k}}\right| \geq k+|I|$.

Additional comments

- Generalized Hall : Given hypergraphs H_{1}, \cdots, H_{n}, when can you find $e_{i} \in H_{i}$'s such that they are pairwise disjoint?
- (Clean but is only sufficient) : For any $I \subseteq[n]$, there is a matching (set of disjoint edges) M_{l} in $G_{l}=\cup_{l} H_{l}$ which cannot be pinned (Not all edges of M_{I} are touched) by fewer than $|I|$ disjoint edges in G/.
- Sadly, this doesn't work even for cases like when all B's are the same!!
- (Sufficient and necessary) : For each $I \subseteq[n]$, you can find a matching M_{l} in G_{l} such that M_{l} cannot be pinned by few than $|I|$ edges from $\cup_{J \subseteq I} M_{J}$.
- For the adversary problem: we want to prevent the sets being too crowded. Try maintaining distance each step!
- Required condition: For each $I \subseteq[n]$, let $A_{i_{1}}, \cdots, A_{i_{k}}$ be the sets containing I in our collection. Than $\left|A_{i_{1}} \cup \cdots \cup A_{i_{k}}\right| \geq k+|I|$.
- But still not enough..

