A signed structure theory for oriented hypergraphs

Lucas J. Rusnak

CombinaTexas 2016

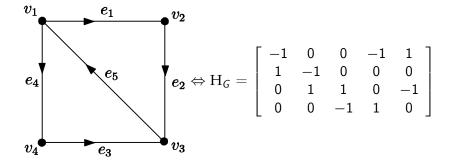
8 May 2016

L. Rusnak (Combina Texas 2016)

Oriented Hypergraphs

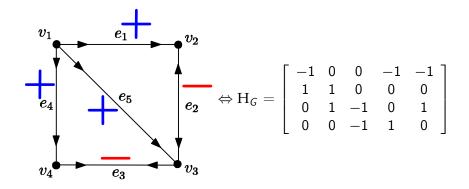
- **()** In a graph: Incidence \Rightarrow adjacency \Leftrightarrow edge (sign + is implied).
 - These separate in an oriented hypergraph.
- Incidence Matrix Magic: Generalizing the cycle space.
- OH Matrices and Unifying Entries.
- Weak Walk Covers and the Matrix-tree Theorem.

Incidence Matrix: Graphs



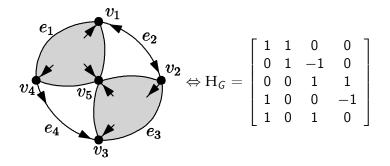
• Minimal Dependency $H \iff$ Circle in G.

Incidence Matrix: Signed Graphs



 Minimal Dependency H ⇐⇒ Positive circle or Contrabalanced handcuff in G.

Incidence Matrix: Oriented Hypergraphs



 Minimal Dependency H ⇐⇒ Balanced subdivision of balanced hypercircles (<u>balanced</u>), Camion connections of disjoint floral families (<u>balanceable</u>), or ??? (<u>unbalanceable</u>).

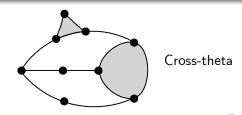
Balanceability: Measuring Negative Circles

Type
BalancedConditionNoteBalancedNo negative circles.All gradingBalanceableIncidence reversals result in balance.All sigUnbalanceableNot balanceable.No sig

All graphs. All signed graphs. No signed graphs.

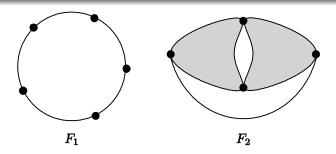
Theorem

The only obstruction to balanceability is three internally-disjoint paths that begin at an edge and terminate at a vertex.



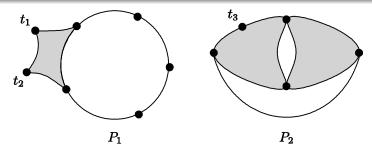
Definition (Flower)

A <u>flower</u> is a minimal inseparable oriented hypergraph.



Definition (Pseudo-flower)

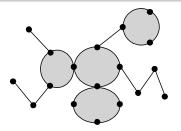
A <u>pseudo-flower</u> is an OH where the <u>weak-deletion</u> of <u>thorns</u> results in a flower.



Hypergraphic Path Analogs - Arteries

Definition

An artery is a subdivision of an edge.



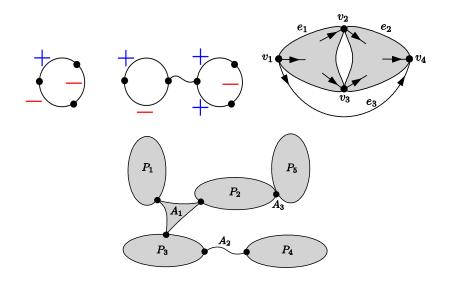
Theorem (R. 2013)

The only* balanced minimal dependencies are balanced flowers or <u>arterial connections</u> of balanced pseudo-flowers. (* Up to <u>balanced subdivision</u> and <u>2-vertex-contraction</u>.)

Image: A matrix

< ∃ > <

Some Minimal Dependencies



L. Rusnak (CombinaTexas 2016)

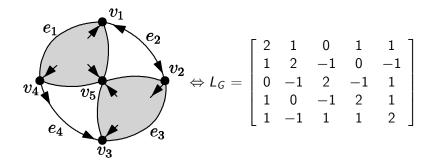
Oriented Hypergraphs

8 May 2016 10 / 33

Oriented Hypergraphic Matrices

Oriented Hypergraphic Matrices

- Incidence Matrix: H_G
- Degree Matrix: D_G
- Adjacency Matrix: A_G
- Laplacian Matrix: $L_G := D_G A_G = H_G H_G^T$



Definition

A <u>weak walk</u> is a sequence $\tilde{w} = a_0, i_1, a_1, i_2, a_2, i_3, a_3, ..., a_{n-1}, i_n, a_n$ of vertices, edges and incidences, where $\{a_k\}$ is an alternating sequence of vertices and edges, and i_h is an incidence containing a_{h-1} and a_h .

Theorem (Chen, Rao, R. and Yang. 2015)

Theorem

Let G be an oriented hypergraph.

- H_G is the half-walk matrix.
- O D_G is the strictly 1-weak walk matrix. Called backsteps.
- A_G is the 1-(non-weak)-walk matrix.
- L_G is negative the 1-weak-walk matrix.

Weak Walk Covers

э

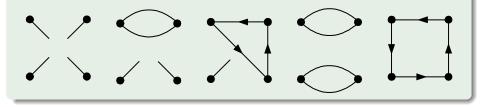
• • • • • • • •

-

Stirling Covers

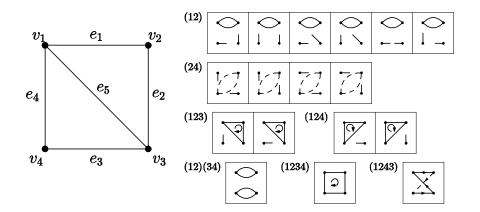
Example

Representations of some permutations via Stirling covers.

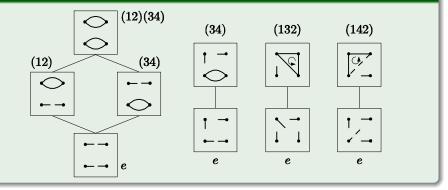


- When do they exist in a graph?
- Include any "missing" adjacencies/backsteps. Consider their sign to be 0.
- A <u>weak walk contributor of G</u> is a labeling of a Stirling cover.

Some Contributors



Example



イロト イヨト イヨト イヨ

Signing Contributors and Activation Classes

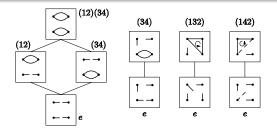
Definition

The sign of a contributor c is defined by

$$sgn(c) = (-1)^{pc(c)}(0)^{zc(c)}.$$

Theorem

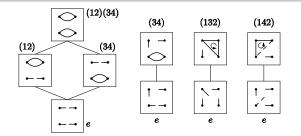
Given a graph G, for every contribution class C we have $\sum_{c \in C} sgn(c) = 0$.



Theorem

For an oriented graph G,

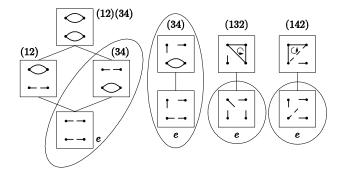
$$\mathsf{det}(L_G) = \sum_{c \in \mathfrak{C}} \mathit{sgn}(c) = 0$$



The Matrix-tree Theorem

Definitions

 $M_0(v_r, v_r; C)$ Maximal element(s) in C where v_r is in no active circle. $m_1(v_r, v_k; C)$ Minimal element in class C where v_r is in an active circle.



Definitions

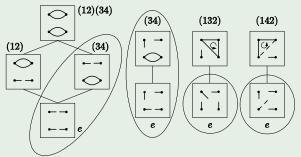
Let (c; v; w) be contributor c with each adjacency or non-zero backstep v_{ri} → v_{ki} removed (zero backsteps are not removed).
The sign of a contributor c with respect to (v; w) is defined as

$$sgn(c; \mathbf{v}; \mathbf{w}) = (-1)^{pc(c; \mathbf{v}; \mathbf{w})} (0)^{zc(c; \mathbf{v}; \mathbf{w})} (-1)^{pl(c; \mathbf{v}; \mathbf{w})} (0)^{zl(c; \mathbf{v}; \mathbf{w})}$$

Opefine C⁼_{≠0}(v; w) as the set of all non-zero contributors in the classes that all have the same sign within a single class.
C[×](v; w):= {(c; v; w)|c ∈ C⁼_∅(v; w) (identification of contributors

along the admissible exceptions).

Example (A v_1 -cut)



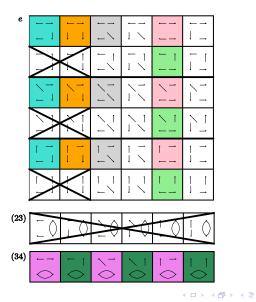
The only members in a $\mathfrak{C}^{=}_{\neq 0}(v_1; v_k)$ are both contributors of the third class. The top member of the fourth class is not a member of $\mathfrak{C}^{=}_{\neq 0}(v_1; v_4)$, but is a member of $\mathfrak{C}^{=}_{\neq 0}(v_4; v_2)$ since the adjacency $v_4 \rightarrow v_2$ does not exist in G.

Theorem

The number of spanning trees in a graph G, T(G), is:

$$T(G) = \varepsilon(v; w) \sum_{c \in \mathfrak{C}^{\times}(v; w)} sgn(c; v; w).$$

The Matrix-tree Theorem



L. Rusnak (Combina Texas 2016)

Oriented Hypergraphs

▶ ৰ ≣ ▶ ≣ ∽ ৭.ে 8 May 2016 26 / 33

Theorem

Let $(L_G; \mathbf{v}; \mathbf{w})$ be the minor determined by removing the rows of \mathbf{v} and the columns of \mathbf{w} , then

$$\det(L_{G}; \mathbf{v}; \mathbf{w}) = \varepsilon(\mathbf{v}; \mathbf{w}) \sum_{c \in \mathfrak{C}^{\times}(\mathbf{v}; \mathbf{w})} sgn(c; \mathbf{v}; \mathbf{w})$$

Theorem

Let $(L_G; \mathbf{v}; \mathbf{w})$ be the minor determined by removing the rows of \mathbf{v} and the columns of \mathbf{w} , then

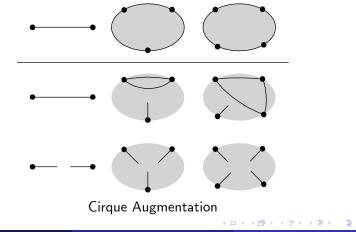
$$\det(L_G; \mathbf{v}; \mathbf{w}) = \varepsilon(\mathbf{v}; \mathbf{w}) \sum_{c \in \mathfrak{C}^{\times}(\mathbf{v}; \mathbf{w})} sgn(c; \mathbf{v}; \mathbf{w})$$

Cracking Hypergraphs

Hyperedges and Stirling covers

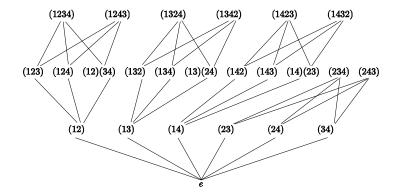
Definition

A closed vertex-cotrail is called a cirque.



The Cirque Order and Extending Cuts

• Multiple $M_0(v_r, v_r; C)$ and $m_1(v_r, v_k; C)$ elements.



Theorem

Let $(L_G; \mathbf{v}; \mathbf{w})$ be the minor determined by removing the rows of \mathbf{v} and the columns of \mathbf{w} , then

$$\det(L_G; \mathbf{v}; \mathbf{w}) = \varepsilon(\mathbf{v}; \mathbf{w}) \sum_{c \in \mathfrak{C}^{ imes}(\mathbf{v}; \mathbf{w})} sgn(c; \mathbf{v}; \mathbf{w})$$

• Combine the cirque order by augmentation and activation order. (Cirque order first.)

The End!

L. Rusnak (CombinaTexas 2016)

Oriented Hypergraphs

<ロ> <同> <同> <同> <同> <同>