Convex rank tests

Anne Shiu Texas A&M University

CombinaTexas 8 May 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

From Algebraic Systems Biology: A Case Study for the Wnt Pathway (Elizabeth Gross, Heather Harrington, Zvi Rosen, Bernd Sturmfels 2016).

イロト 不得 ト イヨト イヨト 三日

OUTLINE OF TALK

- Introduction
- ▶ Main Result: convex rank tests = semigraphoids

- ▶ 2 counterexamples
- Application to biology

OUTLINE OF TALK

- Introduction
- ▶ Main Result: convex rank tests = semigraphoids
- ▶ 2 counterexamples
- Application to biology

JOINT WORK WITH RAYMOND HEMMECKE, JASON MORTON, LIOR PACHTER, BERND STURMFELS, AND OLIVER WIENAND.

ショック 川田 ストット エー・ション

INTRODUCTION

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

PRELIMINARY DEFINITIONS

- A fan in \mathbb{R}^n is a finite collection \mathcal{F} of polyhedral cones such that:
 - if $C \in \mathcal{F}$ and C' is a face of C, then $C' \in \mathcal{F}$, and
 - if $C, C' \in \mathcal{F}$, then $C \cap C'$ is a face of C.
- ► The S_n -arrangement (the braid arrangement) is the arrangement of hyperplanes $\{x_i = x_j\}$ in \mathbb{R}^n .
- Example: the *fan* associated to the S_3 -arrangement has 6 maximal cones.

うして ふぼう ふほう ふほう ふしつ

WHAT IS A CONVEX RANK TEST?

- A rank test is a partition of S_n .
- A convex rank test is a partition of S_n defined by a fan that coarsens the S_n -arrangement.
- Example: the following convex rank test partitions S_3 into 4 classes.

うして ふぼう ふほう ふほう ふしつ

A NON-CONVEX RANK TEST

• This partition of S_3 into 4 classes is *not* a convex rank test.

うして ふぼう ふほう ふほう ふしつ

• Remark: a convex rank test is determined by the walls removed from the S_n -arrangement.

LABEL WALLS BY CONDITIONAL-INDEPENDENCE STATEMENTS

- Two maximal cones of the S_n -fan, labeled by permutations δ and δ' in S_n , share a wall if δ and δ' differ by an *adjacent* transposition: there exists an index k such that $\delta_k = \delta'_{k+1}$, $\delta_{k+1} = \delta'_k$, and $\delta_i = \delta'_i$ for $i \neq k, k+1$.
- ► Label wall $\{\delta, \delta'\}$ by the conditional-independence (CI) statement:

$$\delta_k \perp\!\!\!\perp \delta_{k+1} \,|\, \{\delta_1, \ldots, \delta_{k-1}\}.$$

うして ふぼう ふほう ふほう ふしつ

CONDITIONAL INDEPENDENCE

Consider a collection of n random variables indexed by [n].

The symbol $[i \perp j \mid K]$ represents the statement, "the random variables *i* and *j* are conditionally independent given the joint random variable *K*."

SEMIGRAPHOIDS

(definition #1) A set M of CI statements on [n] is a semigraphoid if the following axiom holds¹:
(SG) If [i⊥⊥j |K ∪ ℓ] and [i⊥⊥ℓ |K] are in M then also [i⊥⊥j |K] and [i⊥⊥ℓ |K ∪ j] are in M.

 $^{^1}$ Probabilistic Conditional Independence Structures, Studený 2005 * * $_{\odot}$ $_{\odot}$

SEMIGRAPHOIDS

- ▶ (definition #1) A set \mathcal{M} of CI statements on [n] is a **semigraphoid** if the following axiom holds¹: (SG) If $[i \perp j \mid K \cup \ell]$ and $[i \perp \ell \mid K]$ are in \mathcal{M} then also $[i \perp j \mid K]$ and $[i \perp \ell \mid K \cup j]$ are in \mathcal{M} .
- ► Example:

(SG) If $[1 \perp 2 \mid 3]$ and $[1 \perp 3 \mid \emptyset]$ are in \mathcal{M} , then also $[1 \perp 2 \mid \emptyset]$ and $[1 \perp 3 \mid 2]$ are in \mathcal{M} .

► So, $\mathcal{M} = \{ [1 \sqcup \exists | \emptyset], [1 \sqcup \exists | 3] \}$ is *not* a semigraphoid.

 1 Probabilistic Conditional Independence Structures, Studený 2005 N \cong $\Im \land$

MAIN RESULT

MAIN THEOREM

- A convex rank test \mathcal{F} is characterized by the collection of walls $\{\delta, \delta'\}$ that are removed from the S_n -arrangement. Let $\mathcal{M}_{\mathcal{F}}$ denote the CI statements that label those walls.
- ▶ Main theorem: The map $\mathcal{F} \mapsto \mathcal{M}_{\mathcal{F}}$ is a bijection between convex rank tests and semigraphoids.
- ► The following convex rank test corresponds to the semigraphoid $\mathcal{M} = \{ 1 \perp 1 \mid 0 \mid 0, 1 \perp 1 \mid 0 \mid 2 \}.$

うして ふぼう ふほう ふほう ふしつ

Restating the Main result via the permutohedron

The Permutohedron

► The fan of the S_n-arrangement is the normal fan of the permutohedron P_n (the convex hull of the vectors (ρ₁,..., ρ_n), where ρ is in S_n).

• The edges of the permutohedron correspond to walls of the S_n -arrangement.

うして ふぼう ふほう ふほう ふしつ

The permutohedron \mathbf{P}_4

The 2-d faces of P_n are squares and hexagons. $(\square) (\square$

Square and Hexagon Axioms

Lemma: A set \mathbf{M} of edges of the permutohedron \mathbf{P}_n is a semigraphoid if and only if \mathbf{M} satisfies the following two axioms:

- ► Square axiom: Whenever an edge of a square is in M, then the opposite edge is also in M.
- ► Hexagon axiom: When two adjacent edges of a hexagon are in M, then the two opposite edges are also in M.

Main theorem, restated.

Coarsenings of the S_n -fan are equivalent to subsets of edges of P_n that satisfy the Square and Hexagon axioms.

Generalization to other Coxeter arrangemts.

Coarsenings = subsets of edges with the polygon property. (Nathan Reading 2012).

HEXAGON AXIOM ILLUSTRATED

Consider $\mathbf{M} = \{1 \perp 1 \mid 0, 1 \perp 2 \mid \{3\}\}$ (again). It is *not* a convex rank test, because it violates the Hexagon axiom:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

MAIN THEOREM ILLUSTRATED

f = (16, 24, 10)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

2 Counterexamples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

SEMIGRAPHOIDS: ANOTHER DEFINITION

► Each CI statement defines a linear form in 2^n unknowns h_I for $I \subseteq [n]$:

$$[i \perp \!\!\!\perp j \mid K] \hspace{0.1in}\mapsto \hspace{0.1in} -h_{ijK} + h_{iK} + h_{jK} - h_{K}.$$

- ▶ Non-negativity of these linear forms defines the $(2^n n 1)$ -dimensional *submodular cone* in \mathbb{R}^{2^n} .
- ► The linear relations among the forms are spanned by entropy equations:

 $[i \perp \!\!\!\perp j \mid \!\! K \cup \ell] + [i \perp \!\!\!\perp \ell \mid \!\! K] = [i \perp \!\!\!\perp j \mid \!\! K] + [i \perp \!\!\!\perp \ell \mid \!\! K \cup j].$

(日) (日) (日) (日) (日) (日) (日) (日)

SEMIGRAPHOIDS: ANOTHER DEFINITION

► Each CI statement defines a linear form in 2^n unknowns h_I for $I \subseteq [n]$:

$$[i \perp \!\!\!\perp j \mid K] \hspace{0.1in}\mapsto \hspace{0.1in} -h_{ijK} + h_{iK} + h_{jK} - h_K.$$

- ▶ Non-negativity of these linear forms defines the $(2^n n 1)$ -dimensional *submodular cone* in \mathbb{R}^{2^n} .
- ► The linear relations among the forms are spanned by entropy equations:

 $[i \, \bot \hspace{-.3mm} \bot \hspace{-.3mm} j \, | \hspace{-.3mm} K \cup \ell] \, + \, [i \, \bot \hspace{-.3mm} \bot \hspace{-.3mm} \ell \, | \hspace{-.3mm} K] \, = \, [i \, \bot \hspace{-.3mm} \bot \hspace{-.3mm} j \, | \hspace{-.3mm} K] \, + \, [i \, \bot \hspace{-.3mm} \bot \hspace{-.3mm} \ell \, | \hspace{-.3mm} K \cup j].$

- ► (definition #4) A semigraphoid *M* specifies the possible zeros for a non-negative solution of the entropy equations.
- A semigraphoid \mathcal{M} is *submodular* if it is the set of actual zeros of a point in the submodular cone.

QUESTION 1

- ▶ Postnikov, Reiner and Williams (2006) asked: Is every simplicial fan which coarsens the S_n-fan the normal fan of convex polytope?
- ▶ Facts. A convex rank test *F* is the normal fan of a polytope if and only if the semigraphoid *M_F* is submodular. This polytope is a *generalized permutohedron*. It is simple iff *F* is simplicial iff the posets on [n] are trees.
- ► The answer to the PRW question is no for n = 4: Proposition. This is simplicial, but not submodular:

PROOF: SIMPLICIAL

This simple polytope looks like a generalized permutohedron...

 $\mathcal{M}_{\mathcal{F}} = \{ [2 \amalg 3 | 14], [1 \amalg 4 | 23], [1 \amalg 2 | \emptyset], [3 \amalg 4 | \emptyset] \}.$

PROOF: NOT SUBMODULAR

... but, it is not a generalized permutohedron.

$[1 \perp 2 \mid \emptyset] + [2 \perp 3 \mid 1]$	=	$[1 \pm 2 3] + [2 \pm 3 \emptyset]$
$[3 \pm 4 \emptyset] + [1 \pm 4 3]$	=	$[3 \amalg 4 1] + [1 \amalg 4 \emptyset]$
$[2 \bot 13 14] + [3 \bot 14 1]$	=	$[2 \bot 1 3 1] + [3 \bot 1 4 12]$
$[1 \pm 4 23] + [1 \pm 2 3]$	=	$[1 \pm 4 3] + [1 \pm 2 34]$

If $\mathcal{M}_{\mathcal{F}}$ were submodular, there would be a solution where the blue unknowns are zero and the others are positive. Adding both left- and right-hand sides yields

 $[2 \bot \downarrow 3 | \emptyset] + [1 \bot \downarrow 4 | \emptyset] + [3 \bot \downarrow 4 | 12] + [1 \bot \downarrow 2 | 34] = 0.$

Contradiction!

For n = 3, there are 22 semigraphoids.

For n = 4, there are 26424 semigraphoids but only 22108 of them are submodular.

For $n \geq 5$, Studený posed many questions, including:

うして ふぼう ふほう ふほう ふしつ

► Is every maximal semigraphoid submodular? The answer is no.

Non-submodular, but maximal

EVERYONE LOVES GRAPHS

► We saw:

submodular semigraphoids = generalized permutohedra.

- ► In statistics, the most popular semigraphoids are *graphical models*.
- ► In mathematics, the most popular polytopes are the *graph associahedra* (Stasheff, Bott-Taubes, ...)
- ▶ **Theorem.** Graphical models = graph associahedra.
- ► For the biological application which started all this, the corresponding graphical rank tests worked best ...

Application: biological clocks

BIOLOGICAL CLOCKS

► Somitogenesis: process during embryonic development in vertebrates in which the somites (precursors to the segments of the backbone) are formed

- ▶ Which genes control this molecular clock?
- Olivier Pourquié lab at the Stowers Institute, now Harvard
- Dequéant et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314:5805 (2006).

SEARCH FOR CYCLIC GENES

- Microarray experiments- a microarray chip can measure the gene expression level of tens of thousands of genes simultaneously.
- ▶ 17 experiments conducted within one cycle
- Example: the expression level of gene Axin2 (0.34204059, 0.195306068, 0.151584691, 0.215046787, -0.238626783, -0.380163626, -0.431032137, -0.41198219, -0.36420852, -0.317375356, -0.141293099, -0.191303023, 0.085202023, 0.420653258, 0.300682397, -0.002791647, 0.281696744)∈ ℝ¹⁷

(日) (日) (日) (日) (日) (日) (日) (日)

- Its rank vector: $(16, 12, 11, \ldots, 14) \in S_{17}$
- Convex rank test as a *statistical test*...

ONE CONVEX RANK TEST: UP-DOWN ANALYSIS

ANOTHER TEST: CYCLOHEDRON

FIGURE: $\mathcal{M}_{\mathcal{F}} = \{ [1 \sqcup 1] \emptyset], [2 \sqcup 1] \emptyset \}.$

$\operatorname{Cyclohedron}$ test for gene $\operatorname{\texttt{Obox}}$

FIGURE: The cyclohedron test smooths the data; shown are the data vector v and the height vector h(v). How many permutations share a height vector?

Result: We identified this and other genes to be possibly part of the biological clock.

CONCLUSION

Summary theorem.

Convex rank tests = semigraphoids = edges of the permutohedron that satisfy the square and hexagon axioms.

Combinatorics helped us answer some questions from statistics and biology.

うして ふぼう ふほう ふほう しょうく

THANK YOU.

PROOF OF THEOREM

LEMMA

If \mathcal{M} is a semigraphoid, then if δ and δ' lie in the same class of \mathcal{M} , then so do all shortest paths on \mathbf{P}_n between them.

うして ふぼう ふほう ふほう しょうく

Lemma \Rightarrow A semigraphoid is a pre-convex rank test.

Proof (continued)

Now, we see that a semigraphoid corresponds to a fan (convex rank test):

Conversely, it is easy to show that a convex rank test satisfies the square and hexagon axioms.