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Introduction



Preliminary definitions

I A fan in Rn is a finite collection F of polyhedral cones
such that:

I if C ∈ F and C ′ is a face of C, then C ′ ∈ F , and
I if C,C ′ ∈ F , then C ∩ C ′ is a face of C.

I The Sn-arrangement (the braid arrangement) is the
arrangement of hyperplanes {xi = xj} in Rn.

I Example: the fan associated to the S3-arrangement has 6
maximal cones.

x1 = x3

x1 = x2



What is a convex rank test?

I A rank test is a partition of Sn.

I A convex rank test is a partition of Sn defined by a fan
that coarsens the Sn-arrangement.

I Example: the following convex rank test partitions S3 into
4 classes.

123 132

312 (x3 > x1 > x2)

321231

213



A non-convex rank test

I This partition of S3 into 4 classes is not a convex rank test.

123 132

312

321231

213

I Remark: a convex rank test is determined by the walls
removed from the Sn-arrangement.



Label walls by conditional-independence
statements

123 132

312

321231

213

1⊥⊥3|∅

1⊥⊥3|{2}

I Two maximal cones of the Sn-fan, labeled by permutations
δ and δ′ in Sn, share a wall if δ and δ′ differ by an adjacent
transposition: there exists an index k such that δk = δ′k+1,
δk+1 = δ′k, and δi = δ′i for i 6= k, k + 1.

I Label wall {δ, δ′} by the conditional-independence (CI)
statement:

δk ⊥⊥ δk+1 | {δ1, . . . , δk−1}.



Conditional independence

Consider a collection of n random variables indexed by [n] .

[1⊥⊥2|∅] [1⊥⊥3|∅] [2⊥⊥3|∅] [2⊥⊥3|1] [1⊥⊥3|2] [1⊥⊥2|3]
[1⊥⊥4|∅] [2⊥⊥4|∅] [3⊥⊥4|∅] [1⊥⊥2|4] [1⊥⊥3|4] [2⊥⊥3|4]
[2⊥⊥4|1] [3⊥⊥4|1] [1⊥⊥4|2] [3⊥⊥4|2] [1⊥⊥4|3] [2⊥⊥4|3]
[1⊥⊥2|34] [1⊥⊥3|24] [1⊥⊥4|23] [2⊥⊥3|14] [2⊥⊥4|13]
[3⊥⊥4|12] [1⊥⊥5|∅] [2⊥⊥5|∅] . . . [4⊥⊥5|123] . . .

The symbol [i⊥⊥j |K] represents the statement,
“the random variables i and j are conditionally independent
given the joint random variable K.”



Semigraphoids

I (definition #1) A set M of CI statements on [n] is a
semigraphoid if the following axiom holds1:
(SG) If [i⊥⊥j |K ∪ `] and [i⊥⊥` |K] are in M
then also [i⊥⊥j |K] and [i⊥⊥` |K ∪ j] are in M.

I Example:
(SG) If [1⊥⊥2 |3] and [1⊥⊥3 |∅] are in M,
then also [1⊥⊥2 |∅] and [1⊥⊥3 |2] are in M.

I So, M = { [1⊥⊥3|∅] , [1⊥⊥2|3] } is not a semigraphoid.

123 132

312

321231

213

1⊥⊥3|{∅}

1⊥⊥2|{3}

1Probabilistic Conditional Independence Structures, Studený 2005
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Main result



Main Theorem

I A convex rank test F is characterized by the collection of
walls {δ, δ′} that are removed from the Sn-arrangement.
Let MF denote the CI statements that label those walls.

I Main theorem: The map F 7→ MF is a bijection
between convex rank tests and semigraphoids.

I The following convex rank test corresponds to the
semigraphoid M = { 1⊥⊥3|∅, 1⊥⊥3|2 }.

123 132

312

321231

213

1⊥⊥3|∅

1⊥⊥3|{2}



Restating the Main result via the permutohedron



The Permutohedron

I The fan of the Sn-arrangement is the normal fan of the
permutohedron Pn (the convex hull of the vectors
(ρ1, . . . , ρn), where ρ is in Sn).

123• 132•

312•

321
•

231
•

213•

1⊥⊥3|∅

1⊥⊥3|{2}

I The edges of the permutohedron correspond to walls of the
Sn-arrangement.



The permutohedron P4

3214
•

2314
•

3241• 2341◦

3124• 2134•

3421•
2431
◦

1324• 1234•
3142•

2143
•

3412• 2413◦
4321◦ 4231◦

1342• 1243•

4312• 4213◦
1432

• 1423•
• ••••••••••••

2⊥⊥3|14

The 2-d faces of Pn are squares and hexagons.



Square and Hexagon Axioms
Lemma: A set M of edges of the permutohedron Pn is a
semigraphoid if and only if M satisfies the following two axioms:

I Square axiom: Whenever an edge of a square is in M,
then the opposite edge is also in M.

I Hexagon axiom: When two adjacent edges of a hexagon
are in M, then the two opposite edges are also in M.

123• 132•
312•

321
•

231
•

213•

Main theorem, restated.
Coarsenings of the Sn-fan are equivalent to subsets of edges of
Pn that satisfy the Square and Hexagon axioms.

Generalization to other Coxeter arrangemts.
Coarsenings = subsets of edges with the polygon property.
(Nathan Reading 2012).



Hexagon axiom illustrated

Consider M = {1⊥⊥3|∅, 1⊥⊥2|{3}} (again).
It is not a convex rank test, because it violates the Hexagon
axiom:

123• 132•

312•

321
•

231
•

213•

1⊥⊥3|∅

1⊥⊥2|{3}



Main theorem illustrated

3214
•

2314
•

3241• 2341◦

3124• 2134•

3421•
2431
◦

1324• 1234•
3142•

2143
•

3412• 2413◦
4321◦ 4231◦

1342• 1243•

4312• 4213◦
1432

• 1423•
4132• 4123•

•••
•••

•••
•••

••••••••

•••••••

•••••••••••
•••••••••••

••
••
••
••
••

••
••
••
••
••

f = (16, 24, 10)



2 counterexamples



Semigraphoids: another definition

I Each CI statement defines a linear form in 2n unknowns hI
for I ⊆ [n]:

[i⊥⊥j |K] 7→ −hijK + hiK + hjK − hK .

I Non-negativity of these linear forms defines the
(2n−n−1)-dimensional submodular cone in R2n .

I The linear relations among the forms are spanned by
entropy equations:

[i⊥⊥j |K ∪ `] + [i⊥⊥` |K] = [i⊥⊥j |K] + [i⊥⊥` |K ∪ j].

I (definition #4) A semigraphoidM specifies the possible
zeros for a non-negative solution of the entropy equations.

I A semigraphoid M is submodular if it is the set of actual
zeros of a point in the submodular cone.
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Question 1

I Postnikov, Reiner and Williams (2006) asked:
Is every simplicial fan which coarsens the Sn-fan
the normal fan of convex polytope?

I Facts. A convex rank test F is the normal fan of a
polytope if and only if the semigraphoid MF is
submodular. This polytope is a generalized permutohedron.
It is simple iff F is simplicial iff the posets on [n] are trees.

I The answer to the PRW question is no for n = 4:
Proposition. This is simplicial, but not submodular:

• •• ◦
• •

• ◦• •• •• ◦◦ ◦• •
• ◦

• •• •

••• •••

••••

••••

••••• •••••

••
••
•

••
••
•



Proof: simplicial
This simple polytope looks like a generalized permutohedron...

◦

2314
41

•

12
2134
•

12
2143•

◦

◦

4123
32•

1423
32•

◦

2431
•

1324•

◦

2413
•

4231•

1342•
4213•

◦◦
◦◦
◦◦

•
•
•
•
•
•
•
•
•
•

••••••••••••

◦◦
◦◦
◦◦
◦◦
◦◦
◦

MF = {[2⊥⊥3|14], [1⊥⊥4|23], [1⊥⊥2|∅], [3⊥⊥4|∅]}.



Proof: not submodular

... but, it is not a generalized permutohedron.

[1⊥⊥2|∅] + [2⊥⊥3|1] = [1⊥⊥2|3] + [2⊥⊥3|∅]
[3⊥⊥4|∅] + [1⊥⊥4|3] = [3⊥⊥4|1] + [1⊥⊥4|∅]
[2⊥⊥3|14] + [3⊥⊥4|1] = [2⊥⊥3|1] + [3⊥⊥4|12]
[1⊥⊥4|23] + [1⊥⊥2|3] = [1⊥⊥4|3] + [1⊥⊥2|34]

If MF were submodular, there would be a solution where the
blue unknowns are zero and the others are positive. Adding
both left- and right-hand sides yields

[2⊥⊥3|∅] + [1⊥⊥4|∅] + [3⊥⊥4|12] + [1⊥⊥2|34] = 0.

Contradiction!



Question 2

For n = 3, there are 22 semigraphoids.

For n = 4, there are 26424 semigraphoids
but only 22108 of them are submodular.

For n ≥ 5, Studený posed many questions, including:

I Is every maximal semigraphoid submodular?

The answer is no.



Non-submodular, but maximal

234|15
•

14|5|23
•

124|35
•

134|25•

15|234
◦

13|5|24•

12|5|34
•

123|45•

◦ ◦

◦

◦

◦

◦

◦



Everyone loves graphs

I We saw:
submodular semigraphoids = generalized permutohedra.

I In statistics, the most popular semigraphoids are
graphical models.

I In mathematics, the most popular polytopes are the
graph associahedra (Stasheff, Bott-Taubes, . . .)

I Theorem. Graphical models = graph associahedra.

I For the biological application which started all this, the
corresponding graphical rank tests worked best . . .



Application: biological clocks



Biological clocks

I Somitogenesis: process during embryonic development in
vertebrates in which the somites (precursors to the
segments of the backbone) are formed

I Which genes control this molecular clock?

I Olivier Pourquié lab at the Stowers Institute, now Harvard

I Dequéant et al. A complex oscillating network of signaling
genes underlies the mouse segmentation clock. Science
314:5805 (2006).



Search for cyclic genes

I Microarray experiments- a microarray chip can measure
the gene expression level of tens of thousands of genes
simultaneously.

I 17 experiments conducted within one cycle

I Example: the expression level of gene Axin2

(0.34204059, 0.195306068, 0.151584691, 0.215046787, -0.238626783,

-0.380163626, -0.431032137, -0.41198219, -0.36420852, -0.317375356,

-0.141293099, -0.191303023, 0.085202023, 0.420653258, 0.300682397,

-0.002791647, 0.281696744)∈ R17

I Its rank vector: (16, 12, 11, . . . , 14) ∈ S17
I Convex rank test as a statistical test...



One convex rank test: Up-down analysis

3214
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•
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◦◦◦

•••••• •••
••

◦◦
◦◦
◦◦
◦◦
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◦◦◦
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•

••
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•••
••
••
••
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•

••
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•
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◦◦◦



Another test: Cyclohedron

••
•

••

•
•

••
•

••

•
•

•

•

•

••

••

•

•

•

••

•

•

Figure: MF = {[1⊥⊥3|∅], [2⊥⊥4|∅]}.



Cyclohedron test for gene Obox
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Figure: The cyclohedron test smooths the data; shown are the data
vector v and the height vector h(v). How many permutations share a
height vector?

Result: We identified this and other genes to be possibly part of
the biological clock.



Conclusion

Summary theorem.
Convex rank tests = semigraphoids = edges of the
permutohedron that satisfy the square and hexagon axioms.

Combinatorics helped us answer some questions from
statistics and biology.



Thank you.



Proof of Theorem

Lemma
If M is a semigraphoid, then if δ and δ′ lie in the same class of
M, then so do all shortest paths on Pn between them.

Lemma ⇒ A semigraphoid is a pre-convex rank test.



Proof (continued)

Now, we see that a semigraphoid corresponds to a fan (convex
rank test):

•

•
•

•
δ̂

•δ
•

• δ′•

•
δ̂′•

•

•
•

•

xi = xj

Conversely, it is easy to show that a convex rank test satisfies
the square and hexagon axioms.


