Convex rank tests

Anne Shiu
Texas Aछ゙M University

CombinaTexas
8 May 2016

From Algebraic Systems Biology: A Case Study for the Wnt Pathway (Elizabeth Gross, Heather Harrington, Zvi Rosen, Bernd Sturmfels 2016).

Outline of talk

- Introduction
- Main Result: convex rank tests = semigraphoids
- 2 counterexamples
- Application to biology

Outline of talk

- Introduction
- Main Result: convex rank tests = semigraphoids
- 2 counterexamples
- Application to biology

Joint work with Raymond Hemmecke, Jason Morton, Lior Pachter, Bernd Sturmfels, and Oliver Wienand.

Introduction

Preliminary definitions

- A fan in \mathbb{R}^{n} is a finite collection \mathcal{F} of polyhedral cones such that:
- if $C \in \mathcal{F}$ and C^{\prime} is a face of C, then $C^{\prime} \in \mathcal{F}$, and
- if $C, C^{\prime} \in \mathcal{F}$, then $C \cap C^{\prime}$ is a face of C.
- The S_{n}-arrangement (the braid arrangement) is the arrangement of hyperplanes $\left\{x_{i}=x_{j}\right\}$ in \mathbb{R}^{n}.
- Example: the fan associated to the S_{3}-arrangement has 6 maximal cones.

What is a convex rank test?

- A rank test is a partition of S_{n}.
- A convex rank test is a partition of S_{n} defined by a fan that coarsens the S_{n}-arrangement.
- Example: the following convex rank test partitions S_{3} into 4 classes.

A NON-CONVEX RANK TEST

- This partition of S_{3} into 4 classes is not a convex rank test.

- Remark: a convex rank test is determined by the walls removed from the S_{n}-arrangement.

LABEL WALLS BY CONDITIONAL-INDEPENDENCE STATEMENTS

- Two maximal cones of the S_{n}-fan, labeled by permutations δ and δ^{\prime} in S_{n}, share a wall if δ and δ^{\prime} differ by an adjacent transposition: there exists an index k such that $\delta_{k}=\delta_{k+1}^{\prime}$, $\delta_{k+1}=\delta_{k}^{\prime}$, and $\delta_{i}=\delta_{i}^{\prime}$ for $i \neq k, k+1$.
- Label wall $\left\{\delta, \delta^{\prime}\right\}$ by the conditional-independence (CI) statement:

$$
\delta_{k} \Perp \delta_{k+1} \mid\left\{\delta_{1}, \ldots, \delta_{k-1}\right\} .
$$

Conditional independence

Consider a collection of n random variables indexed by $[n]$.

```
[1\Perp2|\emptyset] [1\Perp3|\emptyset] [2\Perp3|\emptyset] [2\Perp3|1][1\Perp3|2] [1\Perp2|3]
[1\Perp4|\emptyset] [2\Perp4|\emptyset] [3\Perp4|\emptyset] [1\Perp2|4] [1\Perp3|4] [2\Perp3|4]
[2\Perp4|1] [3\Perp4|1] [1\Perp4|2] [3\Perp4|2] [1\Perp4|3] [2\Perp4|3]
[1\Perp2|34] [1\Perp3|24] [1\Perp4|23] [2\Perp3|14] [2\Perp4|13]
[3\Perp4|12] [1\Perp5|\emptyset] [2\Perp5|\emptyset] .. [4\Perp5|123] ...
```

The symbol $[i \Perp j \mid K]$ represents the statement, "the random variables i and j are conditionally independent given the joint random variable K."

Semigraphoids

- (definition \#1) A set \mathcal{M} of CI statements on $[n]$ is a semigraphoid if the following axiom holds ${ }^{1}$: (SG) If $[i \Perp j \mid K \cup \ell]$ and $[i \Perp \ell \mid K]$ are in \mathcal{M} then also $[i \Perp j \mid K]$ and $[i \Perp \ell \mid K \cup j]$ are in \mathcal{M}.
${ }^{1}$ Probabilistic Conditional Independence Structures, Studený 2005

Semigraphoids

- (definition \#1) A set \mathcal{M} of CI statements on $[n]$ is a semigraphoid if the following axiom holds ${ }^{1}$:
(SG) If $[i \Perp j \mid K \cup \ell]$ and $[i \Perp \ell \mid K]$ are in \mathcal{M} then also $[i \Perp j \mid K]$ and $[i \Perp \ell \mid K \cup j]$ are in \mathcal{M}.
- Example: (SG) If $[1 \Perp 2 \mid 3]$ and $[1 \Perp 3 \mid \emptyset]$ are in \mathcal{M}, then also $[1 \Perp 2 \mid \emptyset]$ and $[1 \Perp 3 \mid 2]$ are in \mathcal{M}.
- So, $\mathcal{M}=\{[1 \Perp 3 \mid \emptyset],[1 \Perp 2 \mid 3]\}$ is not a semigraphoid.

[^0]
Main Result

Main Theorem

- A convex rank test \mathcal{F} is characterized by the collection of walls $\left\{\delta, \delta^{\prime}\right\}$ that are removed from the S_{n}-arrangement. Let $\mathcal{M}_{\mathcal{F}}$ denote the CI statements that label those walls.
- Main theorem: The map $\mathcal{F} \mapsto \mathcal{M}_{\mathcal{F}}$ is a bijection between convex rank tests and semigraphoids.
- The following convex rank test corresponds to the semigraphoid $\mathcal{M}=\{1 \Perp 3|\emptyset, 1 \Perp 3| 2\}$.

Restating the Main result via the permutohedron

The Permutohedron

- The fan of the S_{n}-arrangement is the normal fan of the permutohedron \mathbf{P}_{n} (the convex hull of the vectors $\left(\rho_{1}, \ldots, \rho_{n}\right)$, where ρ is in $\left.S_{n}\right)$.

- The edges of the permutohedron correspond to walls of the S_{n}-arrangement.

The permutohedron \mathbf{P}_{4}

The 2-d faces of P_{n} are squares and hexagons.

Square and Hexagon Axioms

Lemma: A set \mathbf{M} of edges of the permutohedron \mathbf{P}_{n} is a semigraphoid if and only if \mathbf{M} satisfies the following two axioms:

- Square axiom: Whenever an edge of a square is in M, then the opposite edge is also in M.
- Hexagon axiom: When two adjacent edges of a hexagon are in \mathbf{M}, then the two opposite edges are also in M.

Main theorem, restated.
Coarsenings of the S_{n}-fan are equivalent to subsets of edges of P_{n} that satisfy the Square and Hexagon axioms.

Generalization to other Coxeter arrangemts. Coarsenings $=$ subsets of edges with the polygon property. (Nathan Reading 2012).

Hexagon axiom illustrated

Consider $\mathbf{M}=\{1 \Perp 3|\emptyset, 1 \Perp 2|\{3\}\}$ (again).
It is not a convex rank test, because it violates the Hexagon axiom:

Main Theorem illustrated

$$
f=(16,24,10)
$$

2 COUNTEREXAMPLES

SEMIGRAPHOIDS: ANOTHER DEFINITION

- Each CI statement defines a linear form in 2^{n} unknowns h_{I} for $I \subseteq[n]$:

$$
[i \Perp j \mid K] \mapsto-h_{i j K}+h_{i K}+h_{j K}-h_{K}
$$

- Non-negativity of these linear forms defines the $\left(2^{n}-n-1\right)$-dimensional submodular cone in $\mathbb{R}^{2^{n}}$.
- The linear relations among the forms are spanned by entropy equations:

$$
[i \Perp j \mid K \cup \ell]+[i \Perp \ell \mid K]=[i \Perp j \mid K]+[i \Perp \ell \mid K \cup j] .
$$

Semigraphoids: another definition

- Each CI statement defines a linear form in 2^{n} unknowns h_{I} for $I \subseteq[n]$:

$$
[i \Perp j \mid K] \mapsto-h_{i j K}+h_{i K}+h_{j K}-h_{K}
$$

- Non-negativity of these linear forms defines the $\left(2^{n}-n-1\right)$-dimensional submodular cone in $\mathbb{R}^{2^{n}}$.
- The linear relations among the forms are spanned by entropy equations:

$$
[i \Perp j \mid K \cup \ell]+[i \Perp \ell \mid K]=[i \Perp j \mid K]+[i \Perp \ell \mid K \cup j] .
$$

- (definition \#4) A semigraphoid \mathcal{M} specifies the possible zeros for a non-negative solution of the entropy equations.
- A semigraphoid \mathcal{M} is submodular if it is the set of actual zeros of a point in the submodular cone.

Question 1

- Postnikov, Reiner and Williams (2006) asked: Is every simplicial fan which coarsens the S_{n}-fan the normal fan of convex polytope?
- Facts. A convex rank test \mathcal{F} is the normal fan of a polytope if and only if the semigraphoid $\mathcal{M}_{\mathcal{F}}$ is submodular. This polytope is a generalized permutohedron. It is simple iff \mathcal{F} is simplicial iff the posets on $[n]$ are trees.
- The answer to the PRW question is no for $n=4$:

Proposition. This is simplicial, but not submodular:

Proof: simplicial

This simple polytope looks like a generalized permutohedron...

$$
\mathcal{M}_{\mathcal{F}}=\{[2 \Perp 3 \mid 14],[1 \Perp 4 \mid 23],[1 \Perp 2 \mid \emptyset],[3 \Perp 4 \mid \emptyset]\} .
$$

Proof: NOT SUBMODULAR

... but, it is not a generalized permutohedron.

$$
\begin{aligned}
{[1 \Perp 2 \mid \emptyset]+[2 \Perp 3 \mid 1] } & =[1 \Perp 2 \mid 3]+[2 \Perp 3 \mid \emptyset] \\
{[3 \Perp 4 \mid \emptyset]+[1 \Perp 4 \mid 3] } & =[3 \Perp 4 \mid 1]+[1 \Perp 4 \mid \emptyset] \\
{[2 \Perp 3 \mid 14]+[3 \Perp 4 \mid 1] } & =[2 \Perp 3 \mid 1]+[3 \Perp 4 \mid 12] \\
{[1 \Perp 4 \mid 23]+[1 \Perp 2 \mid 3] } & =[1 \Perp 4 \mid 3]+[1 \Perp 2 \mid 34]
\end{aligned}
$$

If $\mathcal{M}_{\mathcal{F}}$ were submodular, there would be a solution where the blue unknowns are zero and the others are positive. Adding both left- and right-hand sides yields

$$
[2 \Perp 3 \mid \emptyset]+[1 \Perp 4 \mid \emptyset]+[3 \Perp 4 \mid 12]+[1 \Perp 2 \mid 34]=0 .
$$

Contradiction!

Question 2

For $n=3$, there are 22 semigraphoids.

For $n=4$, there are 26424 semigraphoids but only 22108 of them are submodular.

For $n \geq 5$, Studený posed many questions, including:

- Is every maximal semigraphoid submodular?

The answer is no.

Non-SUBMODULAR, BUT MAXIMAL

Everyone loves graphs

- We saw:
submodular semigraphoids $=$ generalized permutohedra.
- In statistics, the most popular semigraphoids are graphical models.
- In mathematics, the most popular polytopes are the graph associahedra (Stasheff, Bott-Taubes, ...)
- Theorem. Graphical models = graph associahedra.
- For the biological application which started all this, the corresponding graphical rank tests worked best ...

Application: Biological clocks

Biological clocks

- Somitogenesis: process during embryonic development in vertebrates in which the somites (precursors to the segments of the backbone) are formed

- Which genes control this molecular clock?
- Olivier Pourquié lab at the Stowers Institute, now Harvard
- Dequéant et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314:5805 (2006).

SEARCH FOR CYCLIC GENES

- Microarray experiments- a microarray chip can measure the gene expression level of tens of thousands of genes simultaneously.
- 17 experiments conducted within one cycle
- Example: the expression level of gene Axin2 ($0.34204059,0.195306068,0.151584691,0.215046787,-0.238626783$, $-0.380163626,-0.431032137,-0.41198219,-0.36420852,-0.317375356$, $-0.141293099,-0.191303023,0.085202023,0.420653258,0.300682397$, $-0.002791647,0.281696744) \in \mathbb{R}^{17}$
- Its rank vector: $(16,12,11, \ldots, 14) \in S_{17}$
- Convex rank test as a statistical test...

One convex rank test: Up-down analysis

Another test: Cyclohedron

Figure: $\mathcal{M}_{\mathcal{F}}=\{[1 \Perp 3 \mid \emptyset],[2 \Perp 4 \mid \emptyset]\}$.

Cyclohedron test for gene Obox

Figure: The cyclohedron test smooths the data; shown are the data vector v and the height vector $h(v)$. How many permutations share a height vector?

Result: We identified this and other genes to be possibly part of the biological clock.

Conclusion

Summary theorem.

Convex rank tests $=$ semigraphoids $=$ edges of the permutohedron that satisfy the square and hexagon axioms.

Combinatorics helped us answer some questions from statistics and biology.

Thank you.

Proof of Theorem

Lemma

If \mathcal{M} is a semigraphoid, then if δ and δ^{\prime} lie in the same class of \mathcal{M}, then so do all shortest paths on \mathbf{P}_{n} between them.

Lemma $\Rightarrow \mathrm{A}$ semigraphoid is a pre-convex rank test.

Proof (continued)

Now, we see that a semigraphoid corresponds to a fan (convex rank test):

Conversely, it is easy to show that a convex rank test satisfies the square and hexagon axioms.

[^0]: ${ }^{1}$ Probabilistic Conditional Independence Structures, Studený 2005

