Mathematical Interests of Kiran Chilakamarri

Ken W. Smith Sam Houston State University

CombinaTexas, May 2016

Kiran Chilakamarri

Kiran Babu Chilakamarri passed away on April 25, 2015, at the age of 62. He was a professor at Texas Southern University and a member of the MAA since 2014. He specialized in graph theory, although his research applications spanned many mathematics and scientific domains. He earned two PhDs and authored over 30 papers, many in collaboration.

Kiran Chilakamarri

I first met Kiran in the early 1990s in a conference in the midwest, shortly (I think) after he completed his dissertation under the direction of Neil Robertson.

Kiran Chilakamarri

I first met Kiran in the early 1990s in a conference in the midwest, shortly (I think) after he completed his dissertation under the direction of Neil Robertson. (I believe it was at Ohio State and there was a dinner in which Neil was present.)

Kiran Chilakamarri

I first met Kiran in the early 1990s in a conference in the midwest, shortly (I think) after he completed his dissertation under the direction of Neil Robertson. (I believe it was at Ohio State and there was a dinner in which Neil was present.) What I enjoyed about conversations with Kiran:

Kiran Chilakamarri

I first met Kiran in the early 1990s in a conference in the midwest, shortly (I think) after he completed his dissertation under the direction of Neil Robertson. (I believe it was at Ohio State and there was a dinner in which Neil was present.) What I enjoyed about conversations with Kiran:

- He was enthusiastic!

Kiran Chilakamarri

I first met Kiran in the early 1990s in a conference in the midwest, shortly (I think) after he completed his dissertation under the direction of Neil Robertson. (I believe it was at Ohio State and there was a dinner in which Neil was present.) What I enjoyed about conversations with Kiran:

- He was enthusiastic!

■ He enjoyed mathematics!

Kiran Chilakamarri

I first met Kiran in the early 1990s in a conference in the midwest, shortly (I think) after he completed his dissertation under the direction of Neil Robertson. (I believe it was at Ohio State and there was a dinner in which Neil was present.) What I enjoyed about conversations with Kiran:

- He was enthusiastic!
- He enjoyed mathematics!

■ He would discuss anything!

Kiran Chilakamarri

At times:

- Kiran was frustrated with the direction of academics and the university.

Kiran Chilakamarri

At times:

- Kiran was frustrated with the direction of academics and the university.
- He found administrators frustrating!

Kiran Chilakamarri

Always:

- Kiran cared about students, about the promulgation of mathematics and how students learned

Kiran Chilakamarri

Always:

- Kiran cared about students, about the promulgation of mathematics and how students learned.

Kiran Chilakamarri

Always:

- Kiran cared about students, about the promulgation of mathematics and how students learned.

ALGEBRA

FOR BEGINNERS

BY
H. S. HALL and S. R. KNIGHT, Authors of "Elementary Algeara for Scnools," "Higher Alakbea," "Elimentary Trigonometry," Etc. Etc.

REVISED AND ADAPTED TO AMERICAN SCHOOLS

BY
FRANK L. SEVENOAK, A.M., M.D.,
Profrbson of Matienatics and Assibtant Princtipal in the Stevens School, Academic Deppatment of
the Stevens Institute of Tecunology

Kiran Chilakamarri

Always:

- Kiran cared about students, about the promulgation of mathematics and how students learned.

ALGEBRA

FOR BEGINNERS

BY
H. S. HALL AND S. R. KNIGHT,
 alcerab," "Elcmentaby Tbioosonktry," Etc. Etc.

REVISED AND ADAPTED TO AMERICAN SCHOOLS
By
FRANK L. SEVENOAK, A.M., M.D.,

 thi Btavkes Ingtifute or Techiologr

Nem Gork
MACMILLAN \& CO.
and london
1895
All rigMa reserved

Kiran Chilakamarri

Kiran Chilakamarri

Kiran Chilakamarri

Unit Distance Graphs

Kiran's interest were varied. He published 10 or more papers on unit distance graphs.

Unit Distance Graphs

Kiran's interest were varied. He published 10 or more papers on unit distance graphs.

Consider the plane \mathbb{R}^{2} with ordered pairs adjacent if and only if their distance is 1 .

Unit Distance Graphs

Kiran's interest were varied. He published 10 or more papers on unit distance graphs.

Consider the plane \mathbb{R}^{2} with ordered pairs adjacent if and only if their distance is 1 .
Call this graph $\left(\mathbb{R}^{2}, 1\right)$.
continuum

Unit Distance Graphs

Kiran's interest were varied. He published 10 or more papers on unit distance graphs.

Consider the plane \mathbb{R}^{2} with ordered pairs adjacent if and only if their distance is 1 .
Call this graph $\left(\mathbb{R}^{2}, 1\right)$.
It has cardinality equal to the continuum; indeed, the degree of any vertex is the

Unit Distance Graphs

Kiran's interest were varied. He published 10 or more papers on unit distance graphs.

Consider the plane \mathbb{R}^{2} with ordered pairs adjacent if and only if their distance is 1 .
Call this graph $\left(\mathbb{R}^{2}, 1\right)$.
It has cardinality equal to the continuum; indeed, the degree of any vertex is the continuum.

What is the chromatic number of that graph?

This problem arises in consideration of distance-preserving functions of \mathbb{R}^{2}

Unit Distance Graphs

Kiran's interest were varied. He published 10 or more papers on unit distance graphs.

Consider the plane \mathbb{R}^{2} with ordered pairs adjacent if and only if their distance is 1 .
Call this graph $\left(\mathbb{R}^{2}, 1\right)$.
It has cardinality equal to the continuum; indeed, the degree of any vertex is the continuum.

What is the chromatic number of that graph?
This problem arises in consideration of distance-preserving functions of \mathbb{R}^{2}.

Unit Distance Graphs

Kiran's interest were varied. He published 10 or more papers on unit distance graphs.

Consider the plane \mathbb{R}^{2} with ordered pairs adjacent if and only if their distance is 1 .
Call this graph $\left(\mathbb{R}^{2}, 1\right)$.
It has cardinality equal to the continuum; indeed, the degree of any vertex is the continuum.

What is the chromatic number of that graph?
This problem arises in consideration of distance-preserving functions of \mathbb{R}^{2}.

Unit Distance Graphs

A first pass at a solution to $\chi\left(\mathbb{R}^{2}, 1\right)$ is as follows.

Glue together two copies as follows:

Unit Distance Graphs

A first pass at a solution to $\chi\left(\mathbb{R}^{2}, 1\right)$ is as follows. Consider the "diamond":

Glue together two copies as follows:

Unit Distance Graphs

A first pass at a solution to $\chi\left(\mathbb{R}^{2}, 1\right)$ is as follows. Consider the "diamond":

Glue together two copies as follows:

Unit Distance Graphs

A first pass at a solution to $\chi\left(\mathbb{R}^{2}, 1\right)$ is as follows. Consider the "diamond":

Glue together two copies as follows:

This graph is sometimes called the Moser spindle:

Unit Distance Graphs

A first pass at a solution to $\chi\left(\mathbb{R}^{2}, 1\right)$ is as follows. Consider the "diamond":

Glue together two copies as follows:

This graph is sometimes called the Moser spindle:

Unit Distance Graphs

This can be generalized.

We can 3-color this graph in essentially one way: color the vertices of degree 3 with two colors. sav 1. 2 and color the other vertices with color 3

Unit Distance Graphs

This can be generalized.

We can 3-color this graph in essentially one way: At the end of the chain, add an edge to the last vertex and the first, creating an edge between the onlv two vertices of degree 2

Unit Distance Graphs

This can be generalized.

We can 3-color this graph in essentially one way: color the vertices of degree 3 with two colors, say 1,2 and color the other vertices with color 3 .
edge between the only two vertices of degree 2 .

This requires rour colors and 'i ' is easy' 'o see ' ${ }^{\prime \prime}$ ' ${ }^{\prime}$ this is a unit distance graph

Unit Distance Graphs

This can be generalized.

We can 3-color this graph in essentially one way: color the vertices of degree 3 with two colors, say 1,2 and color the other vertices with color 3 . At the end of the chain, add an edge to the last vertex and the first, creating an edge between the only two vertices of degree 2 .

Unit Distance Graphs

This can be generalized.

We can 3-color this graph in essentially one way: color the vertices of degree 3 with two colors, say 1,2 and color the other vertices with color 3 . At the end of the chain, add an edge to the last vertex and the first, creating an edge between the only two vertices of degree 2 .

This requires four colors and it is easy to see that this is a unit distance graph.

Unit Distance Graphs

This can be generalized.

We can 3-color this graph in essentially one way: color the vertices of degree 3 with two colors, say 1,2 and color the other vertices with color 3.
At the end of the chain, add an edge to the last vertex and the first, creating an edge between the only two vertices of degree 2 .

This requires four colors and it is easy to see that this is a unit distance graph. Indeed, with enough diamonds, it is a matchstick graph.

Unit Distance Graphs

These graphs are all based on the diamond and the fact that the triangle K_{3} requires three colors.

Unit Distance Graphs

These graphs are all based on the diamond and the fact that the triangle K_{3} requires three colors.

Kiran found examples without triangles, based on building "core graphs" like this together....

Unit Distance Graphs

Here is a unit-distant graph requiring 4 colors, found by Simon Golomb.

Unit Distance Graphs

Here is a unit-distant graph requiring 4 colors, found by Simon Golomb.

See a book by Soifer called "The Mathematical Coloring Book".

Unit Distance Graphs

Tile the plane with hexagons of diameter a little less than 1

7-color the interiors of the hexagons so that no points of distance 1 lie in hexagons of the same color.

This shows that 7 colors suffice for the unit-distance graph

Unit Distance Graphs

Tile the plane with hexagons of diameter a little less than 1
7-color the interiors of the hexagons so that no points of distance 1 lie in hexagons of the same color.

This shows that 7 colors suffice for the unit-distance graph

Unit Distance Graphs

Tile the plane with hexagons of diameter a little less than 1
7-color the interiors of the hexagons so that no points of distance 1 lie in hexagons of the same color.

This shows that 7 colors suffice for the unit-distance graph.

Unit Distance Graphs

This leads to some related questions. Suppose we pick a finite subset V of \mathbb{R}^{2} and look at the induced subgraph under this relation. Which finite graphs are realizable in that manner?

Unit Distance Graphs

This leads to some related questions.
Suppose we pick a finite subset V of \mathbb{R}^{2} and look at the induced subgraph under this relation.

This problem turns out to be quite deep.

Unit Distance Graphs

This leads to some related questions.
Suppose we pick a finite subset V of \mathbb{R}^{2} and look at the induced subgraph under this relation.
Which finite graphs are realizable in that manner?

Unit Distance Graphs

This leads to some related questions.
Suppose we pick a finite subset V of \mathbb{R}^{2} and look at the induced subgraph under this relation.
Which finite graphs are realizable in that manner?
This problem turns out to be quite deep.

Unit Distance Graphs

We distinguish between "unit distance graphs" (finite subgraphs of the plane with adjacency formed by distance 1)
from "distance one realizable graphs" (induced subgraphs of the plane, with adiacency if and only if the distance is 1 .)

Unit Distance Graphs

We distinguish between "unit distance graphs" (finite subgraphs of the plane with adjacency formed by distance 1)
from "distance one realizable graphs" (induced subgraphs of the plane, with adjacency if and only if the distance is 1 .)

Unit Distance Graphs

There are some natural generalizations of this problem. Replace \mathbb{R}^{2} with a metric space of some type, such as $\mathbb{R}^{n}, \mathbb{Q}^{n}$ or \mathbb{Z}^{n} We don't want to generalize too far, as every graph provides a natural metric space for which the graph is the unit graph.

Unit Distance Graphs

There are some natural generalizations of this problem.
Replace \mathbb{R}^{2} with a metric space of some type, such as $\mathbb{R}^{n}, \mathbb{Q}^{n}$ or \mathbb{Z}^{n}.

We don't want to generalize too far, as every graph provides a natural metric space for which the graph is the unit graph.

But interesting infinite metric spaces provide a challenge. They need not be

Unit Distance Graphs

There are some natural generalizations of this problem.
Replace \mathbb{R}^{2} with a metric space of some type, such as $\mathbb{R}^{n}, \mathbb{Q}^{n}$ or \mathbb{Z}^{n}.
We don't want to generalize too far, as every graph provides a natural metric space for which the graph is the unit graph.

But interesting infinite metric spaces provide a challenge. They need not be Euclidean

Kiran wrote a paper on Minkowski metric spaces and their unit-distance graphs.

Unit Distance Graphs

There are some natural generalizations of this problem.
Replace \mathbb{R}^{2} with a metric space of some type, such as $\mathbb{R}^{n}, \mathbb{Q}^{n}$ or \mathbb{Z}^{n}.
We don't want to generalize too far, as every graph provides a natural metric space for which the graph is the unit graph.

But interesting infinite metric spaces provide a challenge. They need not be Euclidean....

Kiran wrote a paper on Minkowski metric spaces and their unit-distance graphs.

Unit Distance Graphs

There are some natural generalizations of this problem.
Replace \mathbb{R}^{2} with a metric space of some type, such as $\mathbb{R}^{n}, \mathbb{Q}^{n}$ or \mathbb{Z}^{n}.
We don't want to generalize too far, as every graph provides a natural metric space for which the graph is the unit graph.

But interesting infinite metric spaces provide a challenge. They need not be Euclidean....

Kiran wrote a paper on Minkowski metric spaces and their unit-distance graphs.

Unit Distance Graphs

We could also replace unit distance by $1 \pm \epsilon$; Given a metric space M, and distance r, we can look at the graph (M, r).

Unit Distance Graphs

We could also replace unit distance by $1 \pm \epsilon$; think of bonds in atoms, and look at finite graphs.

Given a metric space M, and distance r, we can look at the graph (M, r)

Unit Distance Graphs

We could also replace unit distance by $1 \pm \epsilon$; think of bonds in atoms, and look at finite graphs.

Given a metric space M, and distance r, we can look at the graph (M, r).

Unit Distance Graphs

We could also replace unit distance by $1 \pm \epsilon$; think of bonds in atoms, and look at finite graphs.

Given a metric space M, and distance r, we can look at the graph (M, r).
More generally, let (M, r, ϵ)

Unit Distance Graphs

We could also replace unit distance by $1 \pm \epsilon$; think of bonds in atoms, and look at finite graphs.

Given a metric space M, and distance r, we can look at the graph (M, r).
More generally, let (M, r, ϵ) or $(M,[r-\epsilon, r+\epsilon])$

Unit Distance Graphs

We could also replace unit distance by $1 \pm \epsilon$; think of bonds in atoms, and look at finite graphs.

Given a metric space M, and distance r, we can look at the graph (M, r).
More generally, let (M, r, ϵ) or $(M,[r-\epsilon, r+\epsilon])$ be the graph with vertices from M,

Apparently $\chi\left(\mathbb{R}^{2}, 1, \epsilon\right) \geq 6$ for all ϵ

Unit Distance Graphs

We could also replace unit distance by $1 \pm \epsilon$; think of bonds in atoms, and look at finite graphs.

Given a metric space M, and distance r, we can look at the graph (M, r).
More generally, let (M, r, ϵ) or ($M,[r-\epsilon, r+\epsilon]$) be the graph with vertices from M, any pair of vertices are adjacent if and only if their distance is in the closed interval $[r-\epsilon, r+\epsilon]$.

Unit Distance Graphs

We could also replace unit distance by $1 \pm \epsilon$; think of bonds in atoms, and look at finite graphs.

Given a metric space M, and distance r, we can look at the graph (M, r).
More generally, let (M, r, ϵ) or ($M,[r-\epsilon, r+\epsilon]$) be the graph with vertices from M, any pair of vertices are adjacent if and only if their distance is in the closed interval $[r-\epsilon, r+\epsilon]$.

Apparently $\chi\left(\mathbb{R}^{2}, 1, \epsilon\right) \geq 6$ for all ϵ !

Kiran Chilakamarri

It was known that $\chi(\mathbb{Q}, 1)=\chi\left(\mathbb{Q}^{2}, 1\right)=\chi\left(\mathbb{Q}^{3}, 1\right)=2$.
It was shown that $\chi\left(\mathbb{Q}^{4}, 1\right)=4$ and $\chi\left(\mathbb{Q}^{5}, 1\right) \geq 5$.

The value of $\chi\left(\mathbb{Q}^{n}, 1\right)$ is closely related to $\chi\left(\mathbb{Z}^{n}, r\right)$ for large values of r

Kiran Chilakamarri

It was known that $\chi(\mathbb{Q}, 1)=\chi\left(\mathbb{Q}^{2}, 1\right)=\chi\left(\mathbb{Q}^{3}, 1\right)=2$.
It was shown that $\chi\left(\mathbb{Q}^{4}, 1\right)=4$ and $\chi\left(\mathbb{Q}^{5}, 1\right) \geq 5$.
The value of $\chi\left(\mathbb{Q}^{n}, 1\right)$ is closely related to $\chi\left(\mathbb{Z}^{n}, r\right)$ for large values of r
(This result from Kiran.)
Kiran also showed that $\chi\left(\mathbb{Q}^{5}, 1\right) \geq 6$ and conjectured that

Kiran Chilakamarri

It was known that $\chi(\mathbb{Q}, 1)=\chi\left(\mathbb{Q}^{2}, 1\right)=\chi\left(\mathbb{Q}^{3}, 1\right)=2$.
It was shown that $\chi\left(\mathbb{Q}^{4}, 1\right)=4$ and $\chi\left(\mathbb{Q}^{5}, 1\right) \geq 5$.
The value of $\chi\left(\mathbb{Q}^{n}, 1\right)$ is closely related to $\chi\left(\mathbb{Z}^{n}, r\right)$ for large values of r. (This result from Kiran.)

Kiran Chilakamarri

It was known that $\chi(\mathbb{Q}, 1)=\chi\left(\mathbb{Q}^{2}, 1\right)=\chi\left(\mathbb{Q}^{3}, 1\right)=2$.
It was shown that $\chi\left(\mathbb{Q}^{4}, 1\right)=4$ and $\chi\left(\mathbb{Q}^{5}, 1\right) \geq 5$.
The value of $\chi\left(\mathbb{Q}^{n}, 1\right)$ is closely related to $\chi\left(\mathbb{Z}^{n}, r\right)$ for large values of r. (This result from Kiran.)

Kiran also showed that $\chi\left(\mathbb{Q}^{5}, 1\right) \geq 6$ and conjectured that $\chi\left(\mathbb{Q}^{5}, 1\right)=8$.

Kiran Chilakamarri

Erdös, Harary and Tutte define the dimension of a graph to be the smallest n for which the graph is a unit-distance graph in \mathbb{R}^{n}.

Kiran Chilakamarri

Erdös, Harary and Tutte define the dimension of a graph to be the smallest n for which the graph is a unit-distance graph in \mathbb{R}^{n}.

They prove that the dimension is less than twice the chromatic number and that $\chi\left(\mathbb{R}^{n}, 1\right)$ is always finite.

Kiran Chilakamarri

Erdös, Harary and Tutte define the dimension of a graph to be the smallest n for which the graph is a unit-distance graph in \mathbb{R}^{n}.

They prove that the dimension is less than twice the chromatic number and that $\chi\left(\mathbb{R}^{n}, 1\right)$ is always finite.

How does $\left.\chi\left(\mathbb{R}^{n}\right)\right)$ grow?) We don't even know its value for $n=2$!

Kiran Chilakamarri

Erdös, Harary and Tutte define the dimension of a graph to be the smallest n for which the graph is a unit-distance graph in \mathbb{R}^{n}.

They prove that the dimension is less than twice the chromatic number and that $\chi\left(\mathbb{R}^{n}, 1\right)$ is always finite.

How does $\left.\chi\left(\mathbb{R}^{n}\right)\right)$ grow?) We don't even know its value for $n=2$! Larman and Roger: $\chi\left(\mathbb{R}^{n}, 1\right) \leq(3+o(1))^{n}$, so $\chi\left(\mathbb{R}^{n}, 1\right)$ is eventually bounded by 4^{n}.
has a 4 -coloring then every open disk of \mathbb{R}^{2} uses at least 3 colors

Kiran Chilakamarri

Erdös, Harary and Tutte define the dimension of a graph to be the smallest n for which the graph is a unit-distance graph in \mathbb{R}^{n}.

They prove that the dimension is less than twice the chromatic number and that $\chi\left(\mathbb{R}^{n}, 1\right)$ is always finite.

How does $\left.\chi\left(\mathbb{R}^{n}\right)\right)$ grow?) We don't even know its value for $n=2$! Larman and Roger: $\chi\left(\mathbb{R}^{n}, 1\right) \leq(3+o(1))^{n}$, so $\chi\left(\mathbb{R}^{n}, 1\right)$ is eventually bounded by 4^{n}.

Kiran found infinite bipartite subgraphs of the unit distance graph in the plane including one with every neighborhood uncountable. (Relied on Zorn's Lemma.)

Kiran Chilakamarri

Erdös, Harary and Tutte define the dimension of a graph to be the smallest n for which the graph is a unit-distance graph in \mathbb{R}^{n}.

They prove that the dimension is less than twice the chromatic number and that $\chi\left(\mathbb{R}^{n}, 1\right)$ is always finite.

How does $\left.\chi\left(\mathbb{R}^{n}\right)\right)$ grow?) We don't even know its value for $n=2$! Larman and Roger: $\chi\left(\mathbb{R}^{n}, 1\right) \leq(3+o(1))^{n}$, so $\chi\left(\mathbb{R}^{n}, 1\right)$ is eventually bounded by 4^{n}.

Kiran found infinite bipartite subgraphs of the unit distance graph in the plane including one with every neighborhood uncountable. (Relied on Zorn's Lemma.)

If \mathbb{R}^{2} has a 4 -coloring then every open disk of \mathbb{R}^{2} uses at least 3 colors.

Kiran Chilakamarri

Suppose we have a coloring of the plane. One can fix a color and ask about the set of vertices of that color. It is possible that such a set could be very strange. It might not be measurable.

Kiran Chilakamarri

Suppose we have a coloring of the plane.
One can fix a color and ask about the set of vertices of that color. It is possible that such a set could be very strange. It might not be measurable.

Kiran Chilakamarri

Suppose we have a coloring of the plane.
One can fix a color and ask about the set of vertices of that color.
It is possible that such a set could be very strange. It might not be measurable.
Its existence might rely on the axioms of set theory such as Zorn's Lemma or the
Axiom of Choice

Kiran Chilakamarri

Suppose we have a coloring of the plane.
One can fix a color and ask about the set of vertices of that color.
It is possible that such a set could be very strange. It might not be measurable.
Its existence might rely on the axioms of set theory

Kiran Chilakamarri

Suppose we have a coloring of the plane.
One can fix a color and ask about the set of vertices of that color.
It is possible that such a set could be very strange. It might not be measurable.
Its existence might rely on the axioms of set theory such as Zorn's Lemma or the Axiom of Choice

Kiran Chilakamarri

Suppose we have a coloring of the plane.
One can fix a color and ask about the set of vertices of that color.
It is possible that such a set could be very strange. It might not be measurable.
Its existence might rely on the axioms of set theory such as Zorn's Lemma or the Axiom of Choice (Maybe even the Continuum Hypothesis??)

Kiran Chilakamarri

Forbidden subgraphs for unit distance graphs.

Kiran Chilakamarri

Forbidden subgraphs for unit distance graphs.
(Elaborate here!)

Kiran Chilakamarri

Forbidden subgraphs for unit distance graphs.
(Elaborate here!)
Out of time, out of time...

Kiran Chilakamarri

Kiran wrote a variety of papers on other graph theory topics.
decompositions of bipartite graphs.

Kiran Chilakamarri

Kiran wrote a variety of papers on other graph theory topics. He had an article in the Monthly that disproved a conjecture about decompositions of bipartite graphs.

Kiran Chilakamarri

Kiran wrote a variety of papers on other graph theory topics. He had an article in the Monthly that disproved a conjecture about decompositions of bipartite graphs.
He wrote on Venn diagrams (with Peter Hamburger, Raymond Pippert)

Kiran Chilakamarri

Kiran wrote a variety of papers on other graph theory topics. He had an article in the Monthly that disproved a conjecture about decompositions of bipartite graphs.
He wrote on Venn diagrams (with Peter Hamburger, Raymond Pippert) He wrote on chemical graph theory (with Doug Klein and Alexandru Balaban)

Kiran Chilakamarri

Kiran wrote a variety of papers on other graph theory topics. He had an article in the Monthly that disproved a conjecture about decompositions of bipartite graphs.
He wrote on Venn diagrams (with Peter Hamburger, Raymond Pippert) He wrote on chemical graph theory (with Doug Klein and Alexandru Balaban) On zero-forcing sets in a graph (with Eunjeong Yi, Nate Dean and Cong Kang).

Kiran Chilakamarri

Kiran wrote a variety of papers on other graph theory topics. He had an article in the Monthly that disproved a conjecture about decompositions of bipartite graphs.
He wrote on Venn diagrams (with Peter Hamburger, Raymond Pippert) He wrote on chemical graph theory (with Doug Klein and Alexandru Balaban) On zero-forcing sets in a graph (with Eunjeong Yi, Nate Dean and Cong Kang). Other co-authors were Carolyn Mahoney, Michael Littman, Gerd Fricke, Manley Perkel, Craig Larson....

Kiran Chilakamarri

But Kiran also wrote papers in engineering and applied mathematics.
"Rotating stratified slow past a shallow ridge", was published in 1990, with M. R

Kiran Chilakamarri

But Kiran also wrote papers in engineering and applied mathematics.
"Rotating stratified slow past a shallow ridge",

Kiran Chilakamarri

But Kiran also wrote papers in engineering and applied mathematics.
"Rotating stratified slow past a shallow ridge", was published in 1990, with M. R. Foster.
series to model the flow, comparing them to experimental results.

Kiran Chilakamarri

But Kiran also wrote papers in engineering and applied mathematics.
"Rotating stratified slow past a shallow ridge", was published in 1990, with M. R. Foster. Imagine airflow over a mountain range ...

Kiran Chilakamarri

But Kiran also wrote papers in engineering and applied mathematics.
"Rotating stratified slow past a shallow ridge", was published in 1990, with M. R. Foster.
Imagine airflow over a mountain range ... That paper used PDEs and Fourier series to model the flow, comparing them to experimental results.

Kiran Chilakamarri

Other papers were "Thermal-acoustic fatigue damage accumulation model of random snap-throughs" with Jon Lee, 2000
and "A new method in static structural reliability", published in Probabilistic Engineering Mechanics, 2002.
(I got these from Kiran when he asked me to digitize them for him!)

Kiran Chilakamarri

Other papers were "Thermal-acoustic fatigue damage accumulation model of random snap-throughs" with Jon Lee, 2000
and "A new method in static structural reliability", published in Probabilistic Engineering Mechanics, 2002.
(I got these from Kiran when he asked me to digitize them for him!)

Kiran Chilakamarri

Other papers were "Thermal-acoustic fatigue damage accumulation model of random snap-throughs" with Jon Lee, 2000
and "A new method in static structural reliability", published in Probabilistic Engineering Mechanics, 2002.
(I got these from Kiran when he asked me to digitize them for him!)

Kiran Chilakamarri

Advances in Graph and Matroid Theory

Conclusion

Kiran experimented with a variety of engineering ideas.

Conclusion

Kiran experimented with a variety of engineering ideas. I adapted one of his ideas to a Michigan cabin....

Conclusion

