Moments of Matching Statistics

Catherine Yan

Department of Mathematics
Texas A\&M University
College Station, TX 77843, USA joint with Niraj Khare and Rudolph Lorentz

CombinaTexas 2016

Background

[Chern, Diaconis, Kane, Rhoades 2014] Closed Expressions for Averages of Set Partition Statistics

Theorem (CDKR)

For a family of combinatorial statistics, the moments have simple closed expressions as linear combinations of shifted Bell numbers, where the coefficients are polynomials in n.

Bell number B_{n} : number of partitions of a set of size n. combinatorial statistics: number of blocks, k-crossings, k-nestings, dimension exponents, occurrence of patterns, etc. Expression:

$$
\sum_{\lambda \in \Pi(n)} f^{k}(\lambda)=\sum_{I \leq j \leq K} Q_{j}(n) B_{n+j}
$$

What happens for matchings?

matchings: partitions of [2 m] in which every block has size 2 .
Objective: closed formula for moments of combinatorial statistics on matchings $\mathcal{M}(2 m)$

What happens for matchings?

matchings: partitions of [2m] in which every block has size 2 . Objective: closed formula for moments of combinatorial statistics on matchings $\mathcal{M}(2 m)$

Theorem (Khare, Lorentz, Y)

For a family of combinatorial statistics, the moments have simple closed expressions as linear combinations of double factorials $T_{2 m}=(2 m-1)!!=(2 m-1)(2 m-3) \cdots 3 \cdot 1$, with constant coefficients.

What happens for matchings?

matchings: partitions of [2m] in which every block has size 2 . Objective: closed formula for moments of combinatorial statistics on matchings $\mathcal{M}(2 m)$

Theorem (Khare, Lorentz, Y)

For a family of combinatorial statistics, the moments have simple closed expressions as linear combinations of double factorials $T_{2 m}=(2 m-1)!!=(2 m-1)(2 m-3) \cdots 3 \cdot 1$, with constant coefficients.

- what kind of (combinatorial) statistics
- general linear combination formula
- How does combinatorial structures help

Definition

(1) A pattern $\underline{P}:=(P, A(P), C(P))$ of length k is a partial matching P on $[k]$ with a set of arcs $A(P)$ and a set of vertices $C(P) \subseteq[k-1]$.
(2) An occurrence of a pattern \underline{P} of length k in $M \in \mathcal{M}_{2 m}$ is a tuple $s:=\left(t_{1}, t_{2}, \cdots, t_{k}\right)$ with $t_{i} \in[2 m]$ such that
(1) $t_{1}<t_{2}<\cdots<t_{k}$.
(2) $\left(t_{i}, t_{j}\right)$ is an arc of M if $(i, j) \in A(P)$.
(3) $t_{i+1}=t_{i}+1$ whenever $i \in C(P)$.

Write $s \in_{\underline{P}} M$ if s is an occurrence of \underline{P} in M.
An occurrence of a pattern P of length 5 with $A(P)=\{(1,4),(3,5)\}$ and $C(P)=\{3\}$.

Family of Statistics

Simple statistic: a pattern \underline{P} of length k and a valuation polynomial $Q \in \mathbb{Q}\left[y_{1}, y_{2}, \cdots, y_{k}, n\right]$, If $M \in \mathcal{M}_{2 m}$ and $s=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in_{\underline{p}} M$, then

$$
f(M)=f_{\underline{P}, Q}(M):=\sum_{s \in_{\underline{P}} M} Q(s, m) .
$$

degree of $f:=$ length of $P+$ degree of Q

General statistic: a finite linear combination of simple statistics.

Example-patterns

- Arcs of fixed length

- k-crossings and k-nestings

- left-neighboring crossings/nestings

Examples (con’t)

- dimension exponents $d(\lambda)=\sum_{i=1}^{m}\left(M_{i}-m_{i}+1\right)-2 m$.

$$
A(P)=\{1,2\}, C(P)=\emptyset \text { and } Q\left(y_{1}, y_{2}, n\right)=y_{2}-y_{1}-1
$$

- Blocks of consecutive vertices $\{i, i+1\}$

$$
A(P)=\{1,2\} \text { and } C(P)=\{1\}, Q=1
$$

Not include: the length of longest arc, size of maximal crossings/nestings, ...

First moment -simple statistic

For any statistic f, define

$$
M(f, 2 m):=\sum_{M \in \mathcal{M}_{2 m}} f(M)
$$

For simple statistic $f_{\underline{P}, Q}$ of degree N, let $\ell=|A(\underline{P})|$ and $c=|C(\underline{P})|$. We have

Theorem

$$
M\left(f_{\underline{P}, Q}, 2 m\right)=P(m) T_{2(m-\ell)}
$$

where $P(x)$ is a polynomial of degree no more than $N-c$. Equivalently,

$$
M\left(f_{\underline{P}, Q}, 2 m\right)= \begin{cases}0 & m<\ell \tag{1}\\ \sum_{-\ell \leq i \leq N-\ell-c} c_{i} T_{2(m+i)} & m \geq \ell\end{cases}
$$

with constants c_{i}.

First moment- general case

Theorem

For any statistic f of degree N, there is an integer $L \leq N / 2$ such that

$$
\begin{equation*}
M(f, 2 m)=R(m) T_{2(m-L)}=\sum_{-L \leq i \leq N} d_{i} T_{2(m+i)} \quad(m \geq L) \tag{2}
\end{equation*}
$$

where $R(x)$ are polynomials of degree no more than $N+L$.

Corollary

Let f be a simple statistic with pattern \underline{P} and the valuation function $Q=1$. Then

$$
M(f, 2 m)=T_{2(m-\ell)}\binom{2 m-c}{k-c}
$$

Theorem (CDKR)

Let \mathcal{S} be the set of all statistics thought of as functions
$f: \cup_{m} \mathcal{M}_{2 m} \rightarrow \mathbb{Q}$. Then \mathcal{S} is closed under the operations of pointwise scaling, addition and multiplication. Thus, if f_{1}, f_{2} $\in \mathcal{S}$ and $a \in \mathbb{Q}$, then there exist matching statistics g_{a}, g_{+}and g_{*} so that for all matching M,

$$
\begin{aligned}
a f_{1}(M) & =g_{a}(M) \\
f_{1}(M)+f_{2}(M) & =g_{+}(M), \\
f_{1}(M) f_{2}(M) & =g_{*}(M)
\end{aligned}
$$

Furthermore, $d\left(g_{a}\right) \leq d\left(f_{1}\right), d\left(g_{+}\right) \leq \max \left\{d\left(f_{1}\right), d\left(f_{2}\right)\right\}$ and $d\left(g_{*}\right) \leq d\left(f_{1}\right)+d\left(f_{2}\right)$.

Combinatorially, product of f_{1} and f_{2} can be computed by considering all the ways to merge two patterns.

General formula

Theorem

For any statistic f of degree N and positive integer r, we have

$$
\begin{equation*}
M\left(f^{r}, 2 m\right)=\sum_{I \leq i \leq J} d_{i} T_{2(m+i)} \quad \text { whenever } m \geq|I| \tag{3}
\end{equation*}
$$

where I and J are constants bounded by $I \geq-\frac{r N}{2}$ and $J \leq r N$.

If f is the occurrence of a simple pattern with no isolated vertices, i.e., $\ell=k / 2, C(P)=\emptyset$ and $Q=1$.

Theorem

For $m \geq \ell$, the r-th moment can be expressed as

$$
\begin{equation*}
M\left(f^{r}, 2 m\right)=\sum_{i=0}^{(r-1) \ell} c_{i}^{(r)}\binom{2 m}{2(\ell+i)} T_{2(m-\ell-i)} \tag{4}
\end{equation*}
$$

Note: $\binom{a}{b}=0$ if $a<b$, and $T_{2 k}=0$ if $k<0$. Hence for $m=\ell, \ell+1, \ldots, \ell r$, Eq.(4) gives a triangular system, which leads to a linear recurrence for the coefficients.

Example: 2-crossings

Let f be the number of 2 -crossings, so $\ell=2$. Let $r=2$.

Example: 2-crossings

Let f be the number of 2 -crossings, so $\ell=2$. Let $r=2$.

$M\left(f^{2}, 2 m\right)=c_{0}\binom{2 m}{4} T_{2 m-4}+c_{1}\binom{2 m}{6} T_{2 m-6}+c_{2}\binom{2 m}{8} T_{2 m-8}$.
Data:
If $m=2, M\left(f^{2}, 4\right)=1$ gives $c_{0}=1$.
If $m=3, M\left(f^{2}, 6\right)=27$ gives $c_{1}=12$.
If $m=4, M\left(f^{2}, 8\right)=616$ gives $c_{2}=70$.

Example: 2-crossings

Let f be the number of 2 -crossings, so $\ell=2$. Let $r=2$.

$M\left(f^{2}, 2 m\right)=c_{0}\binom{2 m}{4} T_{2 m-4}+c_{1}\binom{2 m}{6} T_{2 m-6}+c_{2}\binom{2 m}{8} T_{2 m-8}$.
Data:
If $m=2, M\left(f^{2}, 4\right)=1$ gives $c_{0}=1$.
If $m=3, M\left(f^{2}, 6\right)=27$ gives $c_{1}=12$.
If $m=4, M\left(f^{2}, 8\right)=616$ gives $c_{2}=70$.

Theorem

The second moment of k-crossings equals the second moment of k-nestings.

Note: for $2 m-c \geq 0$,

$$
\binom{2 m-c}{2 \ell-c} T_{2(m-\ell)}= \begin{cases}P(m) T_{2 m-c} & \text { if } c \text { is even } \tag{5}\\ Q(m) T_{2 m-c+1} & \text { if } c \text { is odd }\end{cases}
$$

where $P(x)$ is a polynomial of degree $\ell-\frac{c}{2}$, and $Q(x)$ is a polynomial of degree $\ell-\frac{c+1}{2}$.
Let ℓ be the number of arcs in P. Hence

Theorem

For any positive integer r and $m \geq r(\ell-1) / 2$, there is a closed formula

$$
M\left(f^{r}, 2 m\right)=\sum_{I \leq i \leq J} d_{j} T_{2(m+j)}
$$

where I and J are constants such that $I \geq-r(\ell-1) / 2$ and $J \leq(r-1) \ell+1$.

Example: 2-crossings with left neighboring vertices

Consider the pattern \underline{P} with $A(P)=\{(1,3),(2,4)\}$ and $C(P)=\{1\}$.

$$
\begin{gathered}
M\left(\left(f_{P}\right)^{2}, 2 m\right)=-\frac{1}{6} T_{2(m-1)}+\frac{1}{4} T_{2 m}-\frac{1}{6} T_{2(m+1)}+\frac{1}{36} T_{2(m+2)} \\
M\left(\left(f_{P}\right)^{3}, 2 m\right)=\frac{1}{4} T_{2(m-1)}-\frac{5}{24} T_{2 m}+\frac{11}{120} T_{2(m+1)} \\
-\frac{1}{24} T_{2(m+2)}+\frac{1}{216} T_{2(m+3)} .
\end{gathered}
$$

Example: dimension exponent

$$
d(M)=-m+\sum_{i=1}^{m}\left(M_{i}-m_{i}\right)
$$

It has $A(P)=\{1,2\}, C(P)=\emptyset$, and $Q\left(y_{1}, y_{2}, m\right)=y_{2}-y_{1}-1$.

Proposition

$d(M)$ also counts the number of occurrence of the pattern T of length 3 with $A(T)=\{(1,3)\}$ and $C(T)=\emptyset$.

Thus we have the case that $C(P)=\emptyset$ and $Q=1$.

Theorem

For any positive m and r,

$$
M\left(d(M)^{r}, 2 m\right)=\sum_{j=0}^{2 r} d_{j} T_{2(m+j)}
$$

for some constants d_{j}.
For example,

$$
M(d(M), 2 m)=\frac{1}{2} T_{2 m}-T_{2(m+1)}+\frac{1}{6} T_{2(m+2)}
$$

and
$M\left(d(M)^{2}, 2 m\right)=\frac{1}{4} T_{2 m}-\frac{8}{3} T_{2(m+1)}+\frac{5}{2} T_{2(m+2)}-\frac{8}{15} T_{2(m+3)}+\frac{1}{36} T_{2(m+4)}$

