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Background

[Chern, Diaconis, Kane, Rhoades 2014] Closed Expressions for
Averages of Set Partition Statistics

Theorem (CDKR)

For a family of combinatorial statistics, the moments have
simple closed expressions as linear combinations of shifted Bell
numbers, where the coefficients are polynomials in n.

Bell number Bn: number of partitions of a set of size n.
combinatorial statistics: number of blocks, k-crossings,
k-nestings, dimension exponents, occurrence of patterns, etc.
Expression: ∑

λ∈Π(n)

fk(λ) =
∑

I≤j≤K
Qj(n)Bn+j .
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What happens for matchings?

matchings: partitions of [2m] in which every block has size 2.
Objective: closed formula for moments of combinatorial
statistics on matchings M(2m)

Theorem (Khare, Lorentz, Y)

For a family of combinatorial statistics, the moments have
simple closed expressions as linear combinations of double
factorials T2m = (2m− 1)!! = (2m− 1)(2m− 3) · · · 3 · 1, with
constant coefficients.

what kind of (combinatorial) statistics

general linear combination formula

How does combinatorial structures help
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Patterns

Definition

1 A pattern P := (P,A(P ), C(P )) of length k is a partial
matching P on [k] with a set of arcs A(P ) and a set of
vertices C(P ) ⊆ [k − 1].

2 An occurrence of a pattern P of length k in M ∈M2m is a
tuple s := (t1, t2, · · · , tk) with ti ∈ [2m] such that

1 t1 < t2 < · · · < tk.
2 (ti, tj) is an arc of M if (i, j) ∈ A(P ).
3 ti+1 = ti + 1 whenever i ∈ C(P ).

Write s ∈P M if s is an occurrence of P in M .

An occurrence of a pattern P of length 5 with
A(P ) = {(1, 4), (3, 5)} and C(P ) = {3}.
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Family of Statistics

Simple statistic: a pattern P of length k and a valuation
polynomial Q ∈ Q[y1, y2, · · · , yk, n],
If M ∈M2m and s = (x1, x2, · · · , xk) ∈P M , then

f(M) = fP ,Q(M) :=
∑
s∈PM

Q(s,m).

degree of f := length of P + degree of Q

General statistic: a finite linear combination of simple statistics.
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Example–patterns

Arcs of fixed length

k-crossings and k-nestings

left-neighboring crossings/nestings
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Examples (con’t)

dimension exponents d(λ) =
∑m

i=1(Mi −mi + 1)− 2m.
A(P ) = {1, 2}, C(P ) = ∅ and Q(y1, y2, n) = y2 − y1 − 1.

Blocks of consecutive vertices {i, i+ 1}
A(P ) = {1, 2} and C(P ) = {1}, Q = 1.

Not include: the length of longest arc, size of maximal
crossings/nestings, ...
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First moment –simple statistic

For any statistic f , define

M(f, 2m) :=
∑

M∈M2m

f(M).

For simple statistic fP ,Q of degree N , let ` = |A(P )| and
c = |C(P )|. We have

Theorem

M(fP ,Q, 2m) = P (m)T2(m−`)

where P (x) is a polynomial of degree no more than N − c.
Equivalently,

M(fP ,Q, 2m) =

{
0 m < `∑
−`≤i≤N−`−c ciT2(m+i) m ≥ ` (1)

with constants ci.
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First moment– general case

Theorem

For any statistic f of degree N , there is an integer L ≤ N/2
such that

M(f, 2m) = R(m)T2(m−L) =
∑

−L≤i≤N
diT2(m+i) (m ≥ L) (2)

where R(x) are polynomials of degree no more than N + L.

Corollary

Let f be a simple statistic with pattern P and the valuation
function Q = 1. Then

M(f, 2m) = T2(m−`)

(
2m− c
k − c

)
.
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Higher moments

Theorem (CDKR)

Let S be the set of all statistics thought of as functions
f : ∪mM2m → Q. Then S is closed under the operations of
pointwise scaling, addition and multiplication. Thus, if f1, f2

∈ S and a ∈ Q, then there exist matching statistics ga, g+ and
g∗ so that for all matching M ,

af1(M) = ga(M),

f1(M) + f2(M) = g+(M),

f1(M)f2(M) = g∗(M).

Furthermore, d(ga) ≤ d(f1), d(g+) ≤ max{d(f1), d(f2)} and
d(g∗) ≤ d(f1) + d(f2).

Combinatorially, product of f1 and f2 can be computed by
considering all the ways to merge two patterns.
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General formula

Theorem

For any statistic f of degree N and positive integer r, we have

M(f r, 2m) =
∑
I≤i≤J

diT2(m+i) whenever m ≥ |I| (3)

where I and J are constants bounded by I ≥ − rN
2 and J ≤ rN .
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Special form for simple patterns

If f is the occurrence of a simple pattern with no isolated
vertices, i.e., ` = k/2, C(P ) = ∅ and Q = 1.

Theorem

For m ≥ `, the r-th moment can be expressed as

M(f r, 2m) =

(r−1)`∑
i=0

c
(r)
i

(
2m

2(`+ i)

)
T2(m−`−i). (4)

Note:
(
a
b

)
= 0 if a < b, and T2k = 0 if k < 0. Hence for

m = `, `+ 1, . . . , `r, Eq.(4) gives a triangular system, which
leads to a linear recurrence for the coefficients.
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Example: 2-crossings

Let f be the number of 2-crossings, so ` = 2. Let r = 2.

M(f2, 2m) = c0

(
2m

4

)
T2m−4 + c1

(
2m

6

)
T2m−6 + c2

(
2m

8

)
T2m−8.

Data:
If m = 2, M(f2, 4) = 1 gives c0 = 1.
If m = 3, M(f2, 6) = 27 gives c1 = 12.
If m = 4, M(f2, 8) = 616 gives c2 = 70.

Theorem

The second moment of k-crossings equals the second moment of
k-nestings.
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Simple patterns II: Q = 1 but C(P ) 6= ∅

Note: for 2m− c ≥ 0,(
2m− c
2`− c

)
T2(m−`) =

{
P (m)T2m−c if c is even
Q(m)T2m−c+1 if c is odd,

(5)

where P (x) is a polynomial of degree `− c
2 , and Q(x) is a

polynomial of degree `− c+1
2 .

Let ` be the number of arcs in P . Hence

Theorem

For any positive integer r and m ≥ r(`− 1)/2, there is a closed
formula

M(f r, 2m) =
∑
I≤i≤J

djT2(m+j),

where I and J are constants such that I ≥ −r(`− 1)/2 and
J ≤ (r − 1)`+ 1.
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Example: 2-crossings with left neighboring vertices

Consider the pattern P with A(P ) = {(1, 3), (2, 4)} and
C(P ) = {1}.

M((fP )2, 2m) = −1

6
T2(m−1) +

1

4
T2m −

1

6
T2(m+1) +

1

36
T2(m+2).

M((fP )3, 2m) =
1

4
T2(m−1) −

5

24
T2m +

11

120
T2(m+1)

− 1

24
T2(m+2) +

1

216
T2(m+3).
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Example: dimension exponent

d(M) = −m+

m∑
i=1

(Mi −mi).

It has A(P ) = {1, 2}, C(P ) = ∅, and Q(y1, y2,m) = y2 − y1 − 1.

Proposition

d(M) also counts the number of occurrence of the pattern T of
length 3 with A(T ) = {(1, 3)} and C(T ) = ∅.

Thus we have the case that C(P ) = ∅ and Q = 1.
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Theorem

For any positive m and r,

M(d(M)r, 2m) =

2r∑
j=0

djT2(m+j)

for some constants dj.

For example,

M(d(M), 2m) =
1

2
T2m − T2(m+1) +

1

6
T2(m+2).

and

M(d(M)2, 2m) =
1

4
T2m−

8

3
T2(m+1)+

5

2
T2(m+2)−

8

15
T2(m+3)+

1

36
T2(m+4)
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