Open Problems - Analysis and Probability 2010

Typed by Sofia Ortega Castillo

Summer 2010

Problem 1, by Roland Speicher. Can we distinguish the distribution of elements $I(f)$ and $I(g)$ from different chaos; $f \in L^{2}\left(\mathbb{R}_{+}^{n}\right), g \in L^{2}\left(\mathbb{R}_{+}^{m}\right)$, with $n \neq m$. What can we say about regularity properties of the distribution of $I(f)$? Can we have atoms? Do we have a density?

Problem Set 2, by Quanlei Fang. The Drury-Arveson space of functions of d variables (denoted as H_{d}^{2}) is the reproducing kernel Hilbert space with the normalized reproducing kernel over the unit ball of \mathbb{C}^{d} given by the formula

$$
k_{z}(w)=\frac{\left(1-|z|^{2}\right)^{1 / 2}}{1-\langle w, z\rangle}, \quad|z|<1,|w|<1
$$

Suppose $f \in H_{d}^{2}$.

- Does the condition

$$
\sup _{|z|<1}\left\|f k_{z}\right\|<\infty
$$

implies that f is a multiplier for H_{d}^{2} ?
(Recall that a function $f \in H_{d}^{2}$ is said to be a multiplier if $f g \in H_{d}^{2}$ for every $g \in H_{d}^{2}$.).

- Under what condition on f is the commutator $\left\{M_{f}^{\circ}, M_{f}\right\}$ compact?
- Under what condition on f does the commutator $\left\{M_{f}^{\circ}, M_{f}\right\}$ belong to the Schatten class $\mathcal{C}_{p}, p>n$?
- What is the essential commutant of $\mathcal{T} \mathcal{M}_{n}$?

Problem Set 3, by Detelin Dosev.

- What are the commutators on $\left(\oplus l_{2}^{n}\right)_{c_{0}}$ and $\left(\oplus l_{2}^{n}\right)_{l_{1}}$?
- Are the compact operators (on any Banach space) always commutators?
- In which spaces is every compact operator a commutator of two compacts? Is it true in l_{2} ?

Problem Set 4, by Piotr W. Nowak.

- What is the distortion of Schreier graphs of the Basilica group?
- What is the asymptotic behavior of $\lambda_{1}^{(2)}\left(\Gamma_{n}\right)$ for the Schreier graphs associated to the Hanoi Tower groups $\mathbf{H}^{(k)}$ for $k \geq 4$?
- What is the distortion of the family of Schreier graphs $\left\{\mathbf{H}_{n}^{(k)}\right\}_{n \in \mathbf{N}}$ when $k \geq 4$?

Problem Set 5, by Kevin Beanland. In the following, $L(X, Y)$ is equipped with the strong operator topology and X and Y are separable.

- Suppose X is indecomposable. Is $S S(X, Y)$ a Borel subset of $L(X, Y)$?
- Suppose X does not contain an uncoditional basic sequence. Is $S S(X, Y)$ a Borel subset of $L(X, Y)$?
- Suppose ϱ is unbounded on $S S(X, Y)$. Is X a universal space?

Problem Set 6, by Michael Doré.

- What are the possible Hausdorff dimensions of the closed universal differentiability sets?
- If $\operatorname{dim}(X)=\infty$, can we find any similarly small subsets of X that are universal?
- What similar results are there for Lipschitz $f: X \rightarrow \mathbb{R}^{m}$?

Problem Set 7, by Asger Törnquist.

- Is isomorphism of nuclear simple C^{*} algebras bi-reducible with some other naturally describable equivalence relation, e.g. the \leq_{B} maximal equivalence relation coming from the actions of some particular Polish group?
- Is isomorphism of nuclear simple C^{*} algebras Borel reducible to the orbit equivalence relation of a continuous Polish group action.
- Is the isomorphism relation for $A F$ algebras complete for countable structures?
- Is the isomorphism relation for countable torsion free abelian group (of infinite rank!) complete for countable structures?

Problem Set 8, by Ilijas Farah.

- Does $\bigotimes_{\aleph_{1}} M_{2}(\mathbb{C})$ embed into $\bigotimes_{\aleph_{0}} M_{2}(\mathbb{C}) \otimes \otimes_{\aleph_{1}} M_{3}(\mathbb{C})$?
(Here \aleph_{1} stands for the least uncountable cardinal. Note that the question has a negative answer for any smaller pair of cardinals.)
- Does $\bigotimes_{\kappa} M_{2}(\mathbb{C})$ embed into $\bigotimes_{\aleph_{0}} M_{2}(\mathbb{C}) \otimes \bigotimes_{\kappa} M_{3}(\mathbb{C})$ for all, or any, or some, $\kappa \geq \aleph_{1}$.?
- Assume A is a simple separable unital C^{*}-algebra and α is its automorphism. Are there necessarily a pure state ϕ and an inner automorphism β of A such that $\phi \circ \alpha=\phi \circ \beta$?
- Given a small enough $\epsilon>0$, is there $\delta>0$ such that the following holds?:

Given a positive integer n and an n-dimensional Hilbert space with orthonormal bases $e_{i}, i \leq n$ and $f_{i}, i \leq n$ satisfying $\left|\left(e_{i} \mid f_{j}\right)\right|<\delta$ for all i and all j there is a projection P spanned by a subset of $\left\{e_{i}: i \leq n\right\}$ such that for every $j \leq n$ we have $\epsilon \leq\left\|P f_{j}\right\| \leq 1-\epsilon$.

Problem Set 9, by Todor Tsankov.

- What type of invariant structures does the free group admit?
- Is it true that for every relational, ultrahomogeneous structure with SAP X, there is a copy of \mathbb{F}_{2} in $\operatorname{Aut}(X)$ which acts freely on X ?
- Does there exist an oligomorphic group which does not have property (T)? A Roelcke precompact? Polish group?

Problem set 10, by Christian Rosendal.

- Are Borel sets adversarially Ramsey?
- Does the difference of proof theoretical strength between Σ_{3}^{0} and Δ_{4}^{0} determinacy translate into a difference in truth value with respect to our games?

Problem Set 11, by Bunyamin Sari.

- How do we distinguish uniformly non-homeomorphic spaces which have the same local structure? That is, are there reasonably general infinite dimensional invariants?
- Suppose X and Y are uniformly homeomorphic reflexive and separable spaces. Is it true that they have the same asymptotic structure?

