## Matlab Individual Assignment \#1 (Part A \& B)

Section \#: $\qquad$ Name: $\qquad$ UIN: $\qquad$

1. Define the variables $a$ and $b$ as $a=-18.2$ and $b=6.42$, then evaluate the following:
(a) $1.5 a-\frac{a b+b^{2}}{a}+16 a$
(b) $\ln \left[\left(\frac{a}{b}-1.5 a\right)(b-a)\right]+\frac{2.5 a b+b^{2}+a}{-0.5 a b-b^{2}-a}$
2. The distance $d$ from a point $\left(x_{0}, y_{0}\right)$ to a line $A x+B y+C=0$ is given by $d=\frac{\left|A x_{0}+B y_{0}+C\right|}{\sqrt{A^{2}+B^{2}}}$. Determine the distance from the point $(3,-4)$ to the line $2 x-7 y-10=0$. First define the variables $A, B, C, x_{0}$, and $y_{0}$, then calculate $d$.
3. Create the matrix below by using colon notation and/or the linspace command to create each row:

$$
B=\left[\begin{array}{cccccccc}
0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
69 & 68 & 67 & 66 & 65 & 64 & 63 & 62 \\
1.4 & 1.1 & 0.8 & 0.5 & 0.2 & -0.1 & -0.4 & -0.7
\end{array}\right]
$$

4. Show that $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$. Do this by creating a vector $x$ that has elements: $1,0.5,0.1,0.01$, $0.001,0.00001$, and 0.0000001 . Then, create a new vector $y=\frac{e^{x}-1}{x}$ (remember to use element-by-element operations). Use format long to display the elements of $y$.
5. Plot the function $f(x)=\frac{40}{1+(x-4)^{2}}+5 \sin \left(\frac{20 x}{\pi}\right)$ in the domain $0 \leq x \leq 10$.
6. The position (in meters) of a squirrel on a grass field as a function of time (in seconds) is given by $x(t)=-0.28 t^{2}+6.5 t+61, y(t)=0.18 t^{2}-8.5 t+65$. Plot the position of the squirrel for $0 \leq t \leq 30$ seconds.
