Lab 2 Overview: Symbolic Expressions, Graphs, and Equations

Last week, you learned how to use Python as a calculator, including assigning values to variables, creating symbolic variables, and substituting values into symbolic expressions. Today, we want to look back at our box example and learn how to rewrite expressions, solve equations (exact and approximate), and plot graphs of expressions.

EXAMPLE:

An open-top box is made by cutting out equal square corners of an 9×12 inch sheet of cardboard and folding up the flaps.

1) Write and expand a formula $V(x)$ for the volume of the box as a function of the length x of the squares.
2) Find the volume when the squares are $2,21 / 8,22 / 8,23 / 8, \ldots, 3$ inch side lengths (every $1 / 8$ inch from 2 to 3 inclusive).
3) Find the lengths required to get a volume of 50 cubic inches.
4) Plot a graph of $\mathrm{V}(\mathrm{x})$ in an appropriate practical domain.

Of course, nothing in Python can be done here without YOU doing the first step-writing the function $\mathrm{V}(\mathrm{x})$! As you may recall from last week, our Volume function is $V(x)=x(9-2 x)(12-2 x)$.

Once you have your function, you are ready to use Python. Recall that the symbolic package is a "library" of commands, so we will start all of our labs with the next set of commands which allow us to import all of the commands in sympy (i.e., "check out all the library commands")

```
In [2]: from sympy import *
from sympy.plotting import (plot, plot_parametric)
```


1. Defining and Rewriting Symbolic Expressions

Now we are ready to define our symbolic variable x and start solving the problem. There are several commands that can be used to rewrite a symbolic expresssion, including factor, expand, and simplify. We'll show you what they all do this expression here; since \#1 asks you to "expand" the expression, it is no surprise which command works best.

```
In [2]: x=symbols('x')
\# Recall this allows Python to treat the letter \(x\) as a variable.
\(\mathrm{V}=\mathrm{x} *(9-2 * \mathrm{x}) *(12-2 * \mathrm{x})\)
print('Using simplify:',V.simplify()) \# Remember to include explanatory tex
\(t\) in your print statements!
print('Using factor:',V.factor())
print('Using expand:',V.expand())
```

```
Using simplify: 2*x*(x - 6)*(2*x - 9)
```

Using simplify: 2*x*(x - 6)*(2*x - 9)
Using factor: $2 * x^{*}(x-6) *(2 * x-9)$
Using expand: 4*x**3 - 42*x**2 + 108*x

```

Two important things to notice in the above commands and output. First, as expected, the "expand" command expands our volume function, but recall from last week that the syntax is VERY different-and very common to Python! In most cases, when you want to perform a command on a variable, the correct Python syntax is
variable.command
instead of "command(variable)". The second thing to notice is the Python output, specifically how exponents are used. Instead of printing \(4{ }^{*} x^{\wedge} 3\) (as done on a calculator, for example), Python used for the exponent. This is because the \({ }^{\wedge}\) is a logical operator in Python. Inputs are the same: use \(\mathbf{x} 2\) instead of \(x^{\wedge} 2\).

\section*{2. Substituting Into Symbolic Expressions}

For question 2), we need to SUBSTITUTE the values into \(x\). Recall that the subs command does the trick. Also recall from last week the idea of "list comprehension", where you can substitute ALL the values at once. We'll just type them all in here (noting that \(21 / 8=2+1 / 8\) and so on), but if you want, you can look up a command arange, which is part of the numpy (numerical python) package and is a faster way to enter them.
```

In [3]:

```
```

xvals=[2,2+1/8,2+2/8,2+3/8,2+4/8,2+5/8,2+6/8,2+7/8,3]

```
xvals=[2,2+1/8,2+2/8,2+3/8,2+4/8,2+5/8,2+6/8,2+7/8,3]
Volumes=[V.subs(x,i) for i in xvals]
Volumes=[V.subs(x,i) for i in xvals]
# in words: create a list by taking the expression }V\mathrm{ and substituting for }
# in words: create a list by taking the expression }V\mathrm{ and substituting for }
EVERY value in the list 'xvals'
EVERY value in the list 'xvals'
print('Lengths of the squares (in inches):',xvals)
print('Lengths of the squares (in inches):',xvals)
print('Volumes (in cubic inches):',Volumes)
```

print('Volumes (in cubic inches):',Volumes)

```

Lengths of the squares (in inches): [2, 2.125, 2.25, 2.375, 2.5, 2.625, 2.7 5, 2.875, 3]
Volumes (in cubic inches): [80, 78.2265625000000, 75.9375000000000, 73.1796 875000000, 70.0000000000000, 66.4453125000000, 62.5625000000000, 58.3984375 000000, 54]

\section*{3. Solving Equations Symbolically (Exact)}

For question 3) we need to solve \(\mathrm{V}(\mathrm{x})=50\). There is a type "Equation" in Python, but it is generally easiest to move everything to one side and use the expression, in this case, solve \(\mathrm{V}-50=0\). It should come as no surprise that we use the solve command. Notice that we don't have to use the Variable.Command syntax.
```

In [4]: Vsoln=solve(V-50,x)
print('The values of x which make V=50 are',Vsoln)
The values of x which make V=50 are [7/2 + (-1/2 - sqrt(3)*I/2)*(15/8 + sqr
t(493)*I/4)**(1/3) + 13/(4*(-1/2 - sqrt(3)*I/2)*(15/8 + sqrt(493)*I/4)**(1/
3)), 7/2 + 13/(4*(-1/2 + sqrt(3)*I/2)*(15/8 + sqrt(493)*I/4)**(1/3)) + (-1/
2 + sqrt(3)*I/2)*(15/8 + sqrt(493)*I/4)**(1/3), 7/2 + 13/(4*(15/8 + sqrt(49
3)*I/4)**(1/3)) + (15/8 + sqrt(493)*I/4)**(1/3)]

```

Notice that Python gives bizarre looking solutions which appear to be complex (they all have "l" in them). There are two possible ways to resolve this issue. The first is to convert the answers to floating-point decimals using the command evalf. HOWEVER, notice the square brackets around our answers. Recall this is a type "list", and you cannot convert a list to floating point, as demonstrated in the next line!

In [5]:
```

print(Vsoln.evalf())

```
```

AttributeError
Traceback (most recent call last)

```
<ipython-input-5-3ebfdc4f2b84> in <module>
----> 1 print(Vsoln.evalf())
AttributeError: 'list' object has no attribute 'evalf'

You can, however, convert each element of the list in one command, again by using list comprehension.

In [7]:
```

Vfloat=[i.evalf() for i in Vsoln]
print('The solutions are when x=',Vfloat)

```

The solutions are when \(x=[3.10926620932673+0 . e-22 * I, 0.59125746933059+\) 0.e-20*I, 6.79947632134268-0.e-20*I]

Notice that each solution DOES have an imaginary portion, but a careful observation shows that it is infintessimally small: "e-22" is scientific notation, or "times \(10^{\wedge}(-22)\) ", so they can be ignored (the command re produces only the real part of the complex number and requires the traditional format: re(number)).

HOWEVER, if we think about our answer (and just because you are using a computer to do things doesn't mean you can stop thinking!), we should see that the last answer is nonsense. We can't cut 6.8 inches from each corner of an \(9 \times 12\) sheet of cardboard! So we only want the first two solutions.

IMPORTANT!!! When counting the elements in a list, Python starts counting at ZERO, not one! So if we want the first two solutions, they are the 0th and 1st elements of the list. Notice the use of square brackets to refer to a specific element in the list.

In [11]: print('The practical solutions are when \(x=', r e(V f l o a t[0]), ' a n d ', r e(V f l o a t[1\) ]), 'inches.')

The practical solutions are when \(x=3.10926620932673\) and 0.591257469330590 inches.

Perhaps an easier way to obtain the real, practical solutions (and for many equations, the ONLY way) is to actually proceed with \#4 and use the graph to solve the equation numerically.

\section*{4. Plotting Symbolic Expressions}

You will learn ways to numerically plot expressions in ENGR 102; we will focus on symbolic plotting here for now. In Jupyter, before each graph, you need to enter the following command:
```

In [12]: matplotlib notebook

```

This allows Python to produce the graph in the Jupyter notebook (and not included on a previous graph). For a practical domain, we notice each of the terms we multiplied in our Volume must be positive. So \(0<=x<=4.5\).

In [13]: \(\operatorname{plot}(V,(x, 0,4.5))\)


Out[13]: <sympy.plotting.plot.Plot at 0x5782270>

\section*{3. (Ctd) Solving Equations Numerically (Approximate)}

From the graph, \(\mathrm{y}=\mathrm{V}(\mathrm{x})=50\) when x is between 0.5 and 1.0 and also when x is about 3 (A little more than 3 if you observed your output in \#2). So we can now use Python's nsolve command (numerically solve) by also including a starting "guess" near the solution

In [14]: \(x 1=\) nsolve(V-50,0.5)
\(\mathrm{x} 2=\) nsolve (V-50,3)
print('V=50 when \(\mathrm{x}=\) ', \(\mathrm{x} 1, \mathrm{x} 2\), 'inches.')
\(\mathrm{V}=50\) when \(\mathrm{x}=0.5912574693305903 .10926620932673\) inches.

\section*{Plotting Multiple Graphs on One Plot}

We conclude by plotting multiple functions and distinguishing them by color. Recall to plot a single function we use code like the following:
plot(EXPRESSION, (x,MIN,MAX))
The ( \(\mathbf{x}, \mathbf{M I N}, \mathbf{M A X}\) ) in parentheses is a data type called a tuple, a set of objects in a specific order. This tuple tells Python to plot the expression from \(x=\) MIN to \(x=\) MAX. Tuples are also the key to plot multiple expressions in one command:
plot((EXPRESSION1,(x,MIN,MAX)),(EXPRESSION2,(x,MIN,MAX)),...).
Notice that each plot option is in its own tuple, AND we still have the tuple for the \(x\)-domain within each tuple (an ordered list of ordered lists).

Example Plot the following graphs on the same axes in the domain \([-2,4]: f(x)=3 x^{\wedge} 3-26 x+10, g(x)=9 x^{\wedge} 2-26\), and \(h(x)=18 \mathrm{x}\)

We begin each new plot in Jupyter with the following command, which guarantees the new plot is placed in a new notebook cell:

In [1]: matplotlib notebook

In [3]:
```

x=symbols('x')
f=3*x**3-26*x+10 \# Remember to use ** for exponents!
g=9*x**2-26
h=18*x
plot((f, (x,-2,4)),(g,(x,-2,4)),(h,(x,-2,4)))

```


Out[3]: <sympy.plotting.plot.Plot at 0x7e789d0>

Of course, we can tell which graph is which from what we know about cubics, quadratics, and linear functions, but sometimes it is not obvious which graph is which. So we distinguish them by color. First, we give our plot a name (after executing the command that tells Python to create a new plot window in the notebook).

In [4]: matplotlib notebook

In [5]: fghplot=plot((f, \((x,-2,4)),(g,(x,-2,4)),(h,(x,-2,4)))\)


Now we tell Python to change the line_color of the appropriate graph. Suppose we want g (the second graph in the list) to be red and h (the third graph) to be black. Recall that we have to use the index [1] and [2] since Python starts counting list elements at 0 :
```

In [8]: fghplot[1].line_color='r'
fghplot[2].line_color='k' \# NOTE that k is used for black since b is used f
or blue

```

Now tell Python to show the graph again (NOTE: If we did not want to see the original graph, we could have put show=False at the end of the plot command

In [9]: fghplot.show()


In summary, you should be able to use the following commands in this lab (and all remaining labs!):
symbols
simplify or expand or factor
print
subs
evalf
for (list comprehension)
solve
plot
nsolve

In [ ]: \(\square\)```

