
1/13/2021 M151Overview

localhost:8888/nbconvert/html/EngrMath/Assignments/Fall/M151Overview.ipynb?download=false 1/2

INTRODUCTION TO PYTHON IN MATH 151

Welcome to your Computer Lab for MATH 151!

Why a computer lab in a Calculus course? There are several reasons discussed below. One major reason is that many of you are students in the
College of Engineering and are learning (or will learn) Python in your ENGR 102 course. This lab gives you an integrated curriculum; one whereby you
apply techniques of Python programming to help solve Calculus problems. Generally, these computer labs will contain three types of problems:

1) Problems which allow you to review the general algorithmic processes to solve by hand while eliminating the tedious algebraic and computational
aspects.

2) Problems which allow you to visualize some of the important principles of Calculus to help improve conceptual understanding.

3) Problems (often of a practical nature) which are too algebraically and/or computationally tedious to solve by hand.

We will spend the first two labs learning the basic commands of Python that will be used throughout the 151/152 sequence (numerical calculations,
substituting, symbolic manipulation, solving equations, and plotting graphs). Since labs will be done in teams, we will wait to start until add/drop is
finished. For now, some important information about the Python interface we will be using, Jupyter, and basics about the Python program itself.

HOW TO GET JUPYTER AND PYTHON ON YOUR DEVICE

Obviously, since all Python labs are remote, you will need to have the software on your device. The Jupyter interface we use in 151 may be different
from the interface you will use in ENGR 102 (such as PyCharm or Spyder), but ALL run Python! The Jupyter notebook makes it easier to collect your
input, Python's output, and graphs all in one "Notebook", which your team will use to produce one PDF file to upload when you are done. Jupyter is part
of the Anaconda package (which also include Python). Here are the steps to download it:

1) Go to www.anaconda.com/products/individual

2) Near the bottom of the page, you will find "Anaconda Installers". Click on the one appropriate to your operating system (Windows, Mac, or Linux). If
the link to the top version doesn't work, try the bottom version.

3) Once the installer is downloaded, click on it to install the software (as you would any other app)

4) After the Anaconda software is installed (it may take a while!), find Jupyter in your usual start menu (probably under "Anaconda"). Alternatively, open a
command window and type "jupyter notebook".

5) When you run Jupyter, you may be asked which app to run it in. Jupyter opens in a browser window, so choose your favorite browser.

IMPORTANT THINGS TO KNOW ABOUT PYTHON

Packages Packages in Python are "libraries" of commands. We will mostly use the SymPy ("Symbolic Python") package in this course, so we will start
all of our labs with the next set of commands. The commands allow us to import all of the commands in sympy (i.e., "check out all the library
commands")

In [1]: from sympy import *

from sympy.plotting import (plot, plot_parametric)

Variable types Like most other computer programs, Python stores values in variables. However, these variables can take on different forms, or types.
The biggest difference is with type "integer" and type "float" as shown below:

In [2]: a=5 # This is type integer. Also, the hashtag indicates these are comments which Python ignores

b=5.0 # This is type float

print(sqrt(a), sqrt(b)) # The "print" command produces output, which can (and usually should) con

tain explanatory text

Notice that the first answer was left as sqrt(5), but the second answer was given as a decimal approximation. In SymPy, outputs are exact values
UNLESS inputs are given as floating-point decimals (type "float").

Other types of variables are shown below.

In [3]: c=[1,2,3,4] #List

d=(1,2,3,4) #Tuple-we will use these for domains of graphs starting in Lab 2

x=symbols('x') #Symbolic variable-we will learn more about these in Lab 1

f={x:2} #Dictionary-can be used to make multiple substitutions into an expression

sqrt(5) 2.23606797749979

1/13/2021 M151Overview

localhost:8888/nbconvert/html/EngrMath/Assignments/Fall/M151Overview.ipynb?download=false 2/2

Executing commands on variables In most cases, when you want to perform a command on a variable, the correct Python syntax is

variable.command

instead of "command(variable)", as demonstrated in the example below (though sometimes either format works-but not always!)

In [4]: f=x**2-8*x+15 #Recall we defined x as a symbolic variable in the previous block of commands. So f

is a symbolic expression

 #Also notice that "x squared" is NOT entered as x^2, but as x**2!!!

f.factor() #We can use this syntax to factor the expression

In [7]: f.subs(x,1/3) #We want to substitute x=1/3 into f, or evaluate f(1/3). Notice we get a decimal a

pproximation.

In [10]: f.subs(x,Rational(1,3)) #If we want an exact answer, the "Rational" command treats the number as

"one-third"

 #instead of "1 divided by 3", or 0.333333333333...

Don't worry if you didn't get all of this right away. We will spend the first two labs going over these data types and commands in greater detail! In addition,
there are Python instructional videos available throughout the semester at the Math Learning Center: http://mlc.tamu.edu/Supplemental-Material/Python-
mini-course (http://mlc.tamu.edu/Supplemental-Material/Python-mini-course)

In []:

Out[4]: (x − 5) (x − 3)

Out[7]: 12.4444444444444

Out[10]: 112

9

http://mlc.tamu.edu/Supplemental-Material/Python-mini-course

