Group Member Names:

```
In [1]: from sympy import *
    from sympy.plotting import plot, plot_parametric
```

Lab 1 Template

Each part of each problem should be solved in its own cell.

Question 1

The height of a ball dropped at a starting height, s_0 , and an initial velocity, v_0 , is given by $s(t) = \frac{g}{2}t^2 + v_0t + s_0$ where g is the gravitational constant given by -32 ft/sec².

a.) Given an initial height of 400 ft. and an initial velocity of -16 ft/sec, what is the height of the ball after 4 seconds?

b.) Given an initial height of 10 ft. and an initial velocity of 400 ft/sec, what is the height of the ball after 25 seconds?

```
In [ ]:
```

In []:

Question 2

Given $f(x) = sin(e^x)$, find the slope of the line between the given points, A and B. Be sure to get a decimal approximation for the final answers using .evalf().

a.)
$$A = (0, f(0)), B = (1, f(1))$$

b.)
$$A = (.2), f(.2), B = (.5, f(.5))$$

c.) $A = (.451, f(.451)), B = (\ln(\frac{\pi}{2}), f(\ln(\frac{\pi}{2})))$

d.) What number do these answers appear to be getting closer and closer to? Put your answer in a print statement.

Question 3

Given vectors $p=\langle 4,-2
angle$ and $q=\langle -1,3
angle$: (once again be sure to give decimal answers)

a.) Find $p \cdot q$.

b.) Find the $\left| p \right|$ and $\left| q \right|$.

c.) Find the angle between \boldsymbol{p} and \boldsymbol{q} in radians.

