In [1]:

```
from sympy import *
from sympy.plotting import plot, plot_parametric
```


Lab 1 Template

Each part of each problem should be solved in its own cell. Question 1

The height of a ball dropped at a starting height, s_{0}, and an initial velocity, v_{0}, is given by $s(t)=\frac{g}{2} t^{2}+v_{0} t+s_{0}$ where g is the gravitational constant given by $-32 \mathrm{ft} / \mathrm{sec}^{2}$.
a.) Given an initial height of 400 ft . and an initial velocity of $-16 \mathrm{ft} / \mathrm{sec}$, what is the height of the ball after 4 seconds?
b.) Given an initial height of 10 ft . and an initial velocity of $400 \mathrm{ft} / \mathrm{sec}$, what is the height of the ball after 25 seconds?

In []:

In []:

Question 2

Given $f(x)=\sin \left(e^{x}\right)$, find the slope of the line between the given points, A and B. Be sure to get a decimal approximation for the final answers using .evalf().
a.) $A=(0, f(0)), B=(1, f(1))$
b.) $A=(.2), f(.2), B=(.5, f(.5))$
c.) $A=(.451, f(.451)), B=\left(\ln \left(\frac{\pi}{2}\right), f\left(\ln \left(\frac{\pi}{2}\right)\right)\right.$
d.) What number do these answers appear to be getting closer and closer to? Put your answer in a print statement.

In []:

In []:

In []:

In []:

Question 3

Given vectors $p=\langle 4,-2\rangle$ and $q=\langle-1,3\rangle$: (once again be sure to give decimal answers)
a.) Find $p \cdot q$.
b.) Find the $|p|$ and $|q|$.
c.) Find the angle between p and q in radians.

In []:

In []:

In []:

