In [1]:

```
from sympy import *
```

from sympy.plotting import plot, plot_parametric

Lab 2 Template

Each part of each problem should be solved in its own cell. Question 1

For this problem, we will investigate the properties of the function $f(x)=a x^{3}+b x^{2}+c x+d$ where a, b, c, d are constants.
a.) Let $b=1, c=1, d=1$. For $a=.5,2.5,10$, plot $f(x)$ for each value of a, putting all plots on the same axes $[-5,5]$. In a print statement, explain what happens to the graph of $f(x)$ when a gets larger. (Note: To make the different graphs more clear, use line_color='r'/'g'/'b' in plot to set the color of the each graph to red/blue/green respectively)
b.) Let $a=1, b=1, c=1$. For $d=-50,0,50$, plot $f(x)$ for each value of d, putting all plots on the same axes $[-5,5]$. In a print statement, explain what happens to the graph of $f(x)$ when d changes.
c.) Let $a=1, b=-1, c=-10$. For $d=-20,0,20$, plot $f(x)$ for each value of d, putting all plots on the same axes $[-5,5]$, then use the solve command to find the zeros of the function with the most zeros.

In []:

In []:

In []:

Question 2

The formula for the height of a falling ball is given by $s(t)=\frac{g}{2} t^{2}+v_{0} t+s_{0}$ where $g=-32 \mathrm{ft} / \mathrm{sec}$ ${ }^{2}$ is acceleration due to gravity, v_{0} is the initial velocity of the ball in $\mathrm{ft} / \mathrm{sec}$, and s_{0} is the initial height of the ball given in feet.
a.) Given $v_{0}=30$ and $s_{0}=50$, plot $s(t)$ on $[0,5]$.
b.) For the $s(t)$ given in part a, at what time does the ball hit the ground?
c.) Given an initial height of 10 ft , what initial velocity is required to guarantee the ball hits the ground at $t=10$ seconds?

Question 3

The formula for a circle is given by $(x-h)^{2}+(y-k)^{2}=r^{2}$ where (h, k) is the center of the circle and r is the radius. Plot the circle with a radius of 3 and a center at $(-1,1)$. Remember that the sympy "plot" function only works with functions in terms of x, so it will take two plots on the same axes of $[-10,10]$ to make a circle. (Note: sympy will struggle to plot the left and right side of the circle due to some numerical issues, but this is not a concern)

In []:

