In [1]:

```
from sympy import *
from sympy.plotting import plot, plot_parametric
```


Lab 4 Template

Each part of each problem should be solved in its own cell.

Question 1

Let $f(x)=x e^{-|x|}$.
a.) Plot f on $[-5,5]$.
b.) Find the equations of all horizontal tangent lines. (Note: when declaring x, be sure to use symbols(' x ', real=True))

In []:

In []:

Question 2

Let $f(x)=x \sin (x)$.
a.) Find the first 16 derivatives of f.
b.) Given a number n that is divisible by 4, in a separate print statement for each answer, state what $f^{(n)}(x), f^{(n+1)}(x), f^{(n+2)}(x)$, and $f^{(n+3)}$ are.

In []:

In [2]:

```
    print("f^(n)(x) = ")
    print("f^(n + 1)(x) = ")
    print("f^(n + 2)(x) = ")
    print("f^(n + 3)(x) = ")
f^(n)(x) =
f^(n + 1)(x) =
f^(n + 2)(x) =
f^(n + 3)(x) =
```


Question 3

This problem will explore the properties of derivatives in approximating functions with polynomials.
a.) Plot the function $f(x)=e^{-x^{2}}$ on $[-5,5]$ with $\mathbf{y} \lim =[-1,1]$ and print out $f(0)$.
b.) Compute value of the first 8 derivatives of $f(x)$ at $x=0$. (Only print out the evaluations)
c.) A Taylor polynomial is a polynomial whose coefficients are chosen using the derivatives of another function. The general formula for the $n-t h$ Taylor polynomial centered at zero is given by $T_{n}(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots+\frac{f^{n-1}(0)}{(n-1)!} x^{n-1}+\frac{f^{n}(0)}{(n)!} x^{n}$, where ! is the factorial function from the previous assignment. Plot $T_{2}(x), T_{4}(x), T_{6}(x)$, and $T_{8}(x)$ on [-5,5] on the same axes with $\mathbf{y l i m}=[\mathbf{- 1}, \mathbf{1}]$. (Hint: using list comprehension and the python sum command on a list can greatly reduce the amount of typing necessary for this problem)
d.) Evaluate the absolute error given by $\left|T_{n}(x)-f(x)\right|$ for $n=2,4,6,8$ at $x=1$ and print the output in four separate print statements, making sure to use .evalf() to get a decimal representation.

```
In [ ]:
```

In []:

In []:

In [3]:

```
print("Error for T_2 is:", )
print("Error for T_4 is:", )
print("Error for T_6 is:", )
print("Error for T_8 is:", )
```

Error for T_2 is:
Error for T_4 is:
Error for T_6 is:
Error for T_8 is:

