In [1]: from sympy import *
from sympy.plotting import plot, plot_parametric

Lab 5 Template

Each part of each problem should be solved in its own cell. Question 1

Let $x(t)=t \cos (t)$ and $y(t)=t \sin (t)$.
a.) Plot the curve in three separate plots using $t=[-\pi / 4, \pi / 4], t=[-\pi, \pi]$, and $t=[-3 \pi / 2,3 \pi / 2]$ using ylim $=[-5,2]$ and $\mathbf{x l i m}=[-5,5]$.
b.) Find the approximate points on the graph (using nsolve and giving (x, y) pairs not t values) such that the tangent line is horizontal. (Hint: you need to give nsolve a guess to work properly. For this part, you'll need to use nsolve with 3 different guesses that yield three separate t values. It may take a few tries to get it right)
c.) Find the approximate points on the graph (using nsolve) such that the tangent line is vertical.

In []:

In []:

In []:

Question 2

Let $x(t)=2 \cos (t)+\cos (2 t)$ and $y(t)=2 \sin (t)-\sin (2 t)$.
a.) Plot the curve for $t=[0,6]$.
b.) Find the equation for the tangent line at $(-1,2)$. (You may need to use nsolve for this part and use the plot to pick a good guess)
c.) Find all points where the curve has a vertical tangent line for t in the interval [0, 6]. (Hint: Be careful which t values you use when finding the point and make sure to verify that your t value makes sense. Many t values may look like possible answers, but they are not.)

In []:

Question 3

Find $\frac{d y}{d x}$ for the following functions and be sure to use .simplify() on your final answer.
a.) $y=x^{\sin \left(x^{2}\right)}$
b.) $y=\arctan \left(\arccos \left(e^{x}\right)\right)$
c.) $y^{2}+\sin (y)=\frac{x^{2}-1}{x^{3}+7}$ (Hint: If you have $f(y)=g(x)$, then $\frac{d y}{d x}=\frac{g^{\prime}(x)}{f^{\prime}(y)}$. Also for this problem, use .factor() instead of .simplify())

In []:
In []:
In []:

