1. The curve \(y = \frac{x}{1 + x^2} \) is called a serpentine. Find an equation of the tangent line to the curve at \(x = 3 \).

2. Given these table values, compute \(p'(4) \) and \(q'(4) \) where \(p(x) = f(x)g(x) \) and \(q(x) = f(x)/g(x) \).

\[
\begin{array}{cccc}
 f(4) & g(4) & f'(4) & g'(4) \\
 2 & 5 & 6 & -3
\end{array}
\]
3. The table gives world population $P(t)$, in millions, where t is in years and $t = 0$ corresponds to the year 1900. (a) Estimate the rate of population growth in 1920 by averaging the slopes of the two nearest secant lines. (b) Do the same for 2000.

<table>
<thead>
<tr>
<th>t</th>
<th>Pop.</th>
<th>t</th>
<th>Pop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1650</td>
<td>60</td>
<td>3040</td>
</tr>
<tr>
<td>10</td>
<td>1750</td>
<td>70</td>
<td>3710</td>
</tr>
<tr>
<td>20</td>
<td>1860</td>
<td>80</td>
<td>4450</td>
</tr>
<tr>
<td>30</td>
<td>2070</td>
<td>90</td>
<td>5280</td>
</tr>
<tr>
<td>40</td>
<td>2300</td>
<td>100</td>
<td>6080</td>
</tr>
<tr>
<td>50</td>
<td>2560</td>
<td>110</td>
<td>6870</td>
</tr>
</tbody>
</table>

4. The position of a particle is $s(t) = t^3 - 6t^2 + 9t$, $t \geq 0$, with t in seconds and s in meters. Answer these items.

(a) Draw a number line with $0 \leq t \leq 5$ at 1-second intervals. Show where velocity $v(t)$ is 0, +, −.

(b) Find the total distance traveled by the particle in the first 5 seconds. (Quick way: integrate speed.)
5. Find an equation of the tangent line to the curve
\[y = 2x \sin x \] at \((\frac{1}{2}\pi, \pi)\).

6. Graph \(f(x) = \frac{x}{\sqrt{1 - \cos 2x}}\) on calculator (or not).

(a) What type of discontinuity does \(f\) appear to have at 0? [No graph? Answer (b) first!]

(b) Analytically determine the type of discontinuity by computing left and right limits of \(f(x)\) at 0.
7. Given these table values, compute \(h'(1) \) and \(k'(1) \) where
\[
h(x) = f(g(x)) \text{ and } k(x) = g(f(x)).
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(g(x))</th>
<th>(f'(x))</th>
<th>(g'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

8. Find all values of \(x \) at which \(f(x) = \sqrt{\frac{x^4 - x + 1}{x^4 + x + 1}} \) has horizontal tangents. (Use CAS and/or graph.)
9. There are two points on the slanted hyperbola
\[x^2 - 4xy + y^2 = 4 \] corresponding to \(x = 0 \).

(a) First find the \(y \)-coordinates of these points.

(b) Compute slopes of tangent lines at the points.

10. Find equations of both tangent lines to the ellipse
\[x^2 + 4y^2 = 36 \] that pass through the point \(P(12,3) \).
11. Given position $\mathbf{r}(t) = [-\frac{1}{2}t^2, t]$, $-4 \leq t \leq 4$, graph it. Compute velocity $\mathbf{v}(t)$ and acceleration $\mathbf{a}(t)$ at $t = 1$.

12. Let $\mathbf{r}(t) = [e^t \cos t, e^t \sin t]$. Compute velocity and speed at $t = 0$.

[Diagram of Problem 11]
13. Obtain and identify a Cartesian equation for the parametric equations \(x = 3 \cos t, y = -2 \sin t \). Graph the curve, indicating direction of motion for increasing \(t \).

14. Given \(f(x) = xe^x \), find a formula for \(f^{(n)}(x) \), the \(n \)th derivative of \(f \). (Find some derivatives to see pattern.)
15. Find all points \((x, y)\) on the curve \(\mathbf{r}(t) = [e^{\cos t}, e^{\sin t}]\) where the tangent line is either horizontal or vertical.

16. Find the lowest point \((x, y)\) on the curve \(x = t^3 - 3t, y = t^2 + t + 1\). (The tangent line is horizontal there.)
17. A cylindrical tank with radius 5 m is being filled with water at a rate of 3 m3/min. At what rate is the height of the water changing? Include appropriate units.

18. A ladder 5 m long rests against a vertical wall. The bottom of the ladder slides away from the wall at a rate of 1 m/s. What is the rate of change of the angle θ between the ladder and the ground when the ladder is 3 m from the wall?
19. The edge of a cube was found to be 30 cm with a possible error of \(\frac{1}{10} = 0.1 \) cm. Use differentials to estimate the maximum possible errors in the volume and surface area of the cube.

20. Say that \(g (2) = -4 \) and \(g' (x) = \sqrt{x^2 + 5} \) for all \(x \).

(a) Find the linear approximation \(L(x) \) of \(g \) at \(a = 2 \).

(b) Find the quadratic approximation \(Q(x) \) of \(g \) at \(a = 2 \).
21. Find the point \((x, y)\) where the curves \(y = x^3 - 3x + 4\) and \(y = 3(x^2 - x)\) are tangent to each other, that is, have a common tangent line. Give the line’s equation.

22. The figure below shows a circle of radius 1 inscribed in the parabola \(y = x^2\). Find its center \((h, k)\).
23. Find a formula for the inverse \(g(x) = f^{-1}(x) \) of the function \(f(x) = 2 + \sqrt{4 + 7x} \). Give the domain and range of \(g \).

24. Let \(g(x) = f^{-1}(x) \) be the inverse function of \(f(x) = x + e^x \). Compute \(g(1) \) and \(g'(1) \).