Fall 2015 Math 151
Exam 2H Solutions
Wed, 04/Nov ©2015 Art Belmonte

1. So \(f(x) = \frac{x}{1+x^2} \) & \(f'(x) = \frac{-1-x^2}{(1+x^2)^2} \). The tangent is
\[y = f(3) + f'(3)(x-3) = \frac{3}{10} - \frac{2}{25} (x-3) = \frac{27}{50} - \frac{2}{25} x. \]

2. Now \(p = fg \) and \(q = f/g \) imply \(p' = f'g + fg' \) and \(q' = \frac{ef-gf'}{x^2} \). Via table, \(p'(4) = 24 \) and \(q'(4) = \frac{36}{25} \).

3. For \(t = 20 \) (year 1920), backward and forward slopes are \(1750-1860 = 11 \) and \(2070-1860 = 21 \); average slope: \(\frac{11+21}{2} = 16 \). Similarly, for 1980 average of slopes is \(\frac{80+29}{2} = 79.5 \). Rates are in millions of people per year.

4. Now \(s(t) = t^3 - 6t^2 + 9t \) and \(v(t) = 3t^2 - 12t + 9 \) or \(v(t) = 3(t-1)(t-3) \).

(a) Velocity is 0 for \(t = 1 \) or \(t = 3 \), positive on \([0,1) \cup (3,5] \), and negative on \((1,3) \).

(b) In the first 5 seconds, the distance traveled is \(|s(1) - s(0)| + |s(3) - s(1)| + |s(5) - s(3)| \) or 28 m. Or integrate speed: \(f_0^5 |v(t)| \, dt = 28 \).

5. With \(y = 2 \sin x \), we have \(y' = 2 \sin x + 2 \cos x \). At \(x = \frac{\pi}{2} \), the tangent line is \(y = \pi + 2 \left(\frac{\pi}{2} - x \right) \) or \(y = 2x \).

6. Recall \(f(x) = x/\sqrt{1-x^2} \).

(a) Graph at end shows jump discontinuity at \(x = 0 \).

(b) As \(x \to 0^- \), \(f(x) \to -\frac{\sqrt{2}}{2} \), but as \(x \to 0^+ \), \(f(x) \to \frac{\sqrt{2}}{2} \), verifying this jump discontinuity.

7. Now \(h(x) = f(g(x)) \), and \(h'(x) = f'(g(x))g'(x) \). So \(h'(1) = f'(g(1))g'(1) = f'(2)(g'(1) = (5)(6) = 30 \) via table. Similarly, \(k'(1) = 36 \) for \(k(x) = g(f(x)) \).

8. With \(f(x) = \sqrt{x^2-x+1} \), \(f'(x) = \frac{x}{\sqrt{x^2-x+1}} \).

for \(x = \pm \frac{3^{1/4}}{3} = \pm \frac{1}{\sqrt{3}} \pm 0.76 \).

9. Recall the hyperbola’s equation, \(x^2 - 4xy + y^2 = 4 \).

(a) When \(x = 0 \), \(y = \pm 2 \).

(b) Via implicit differentiation, \(y' = \frac{-2y}{x} \).

At \((0, \pm 2) \), the tangent lines have slope 2.

10. [See page 2 for solution to #10 (hard).]

11. With position \(\mathbf{r}(t) = [-\frac{1}{2}t^2, t] \), we have velocity \(\mathbf{v}(t) = [-t, 1] \) and acceleration \(\mathbf{a}(t) = [-1, 0] \). Thus \(\mathbf{v}(1) = [-1, 1] \) and \(\mathbf{a}(1) = [-1, 0] \). Graph at end.

12. With position \(\mathbf{r}(t) = [e^t \cos t, e^t \sin t] \), we have velocity \(\mathbf{v}(t) = [e^t (\cos t - \sin t), e^t(\cos t + \sin t)] \). At \(t = 0 \), the velocity is \([1, 1] \) and speed is \(\sqrt{2} \).

13. With \(x = 3 \cos t \) and \(y = -2 \sin t \), the trig identity \(\cos^2 t + \sin^2 t = 1 \) implies \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \), an ellipse traversed clockwise for increasing \(t \). Graph at end.

14. The derivatives of \(f(x) = xe^x \) are \((x+1)e^x \), \((x+2)e^x \), \((x+3)e^x \), \((x+4)e^x \) ... So \(f^{(n)}(x) = (x+n)e^x \).

15. Now \(\mathbf{r}(t) = [x(t), y(t)] = [\cos t, \sin t] \) has period \(2\pi \).

- **Horizontal tangents:** solve \(\frac{dx}{dt} = -\sin t = 0 \); get \(t = \frac{\pi}{2}, \frac{3\pi}{2} \in [0, 2\pi] \); note \(\frac{dy}{dt} = -\cos t \neq 0 \) thereat; points \((x, y) \) are \((1, e) \) and \((1, -e) \).

- **Vertical tangents:** solve \(\frac{dy}{dt} = -\cos t = 0 \); get \(t = 0, \pi \in [0, 2\pi] \); note \(\frac{dx}{dt} = e^t \sin t \neq 0 \) thereat; points \((x, y) \) are \((e, 1) \) and \((-e, 1) \).

16. Recall \(x = t^3 - 3t \) and \(y = t^2 + t + 1 \). The horizontal tangent occurs when \(\frac{dy}{dt} = 2t + 1 = 0 \); i.e., at \(t = -\frac{1}{2} \).

Note \(\frac{dx}{dt} = 3t^2 - 3 \neq 0 \) thereat. The lowest point is \((x, y) = (\frac{11}{8}, \frac{3}{4}) \) \((1.375, 0.75) \).

17. Volume of water is \(V = \pi x^2 h = 25\pi h \). Therefore, \(\frac{dV}{dh} = 25\pi x^2 \) or \(\frac{dh}{dt} = \frac{dy}{dt} \approx 0.0382 \) m/min.

18. So \(\cos \theta = \frac{\frac{x}{2}}{\sqrt{\frac{49}{3}} \sqrt{\frac{49}{16}}} \) gives \(-\sin \theta \) \(\frac{d\theta}{dt} = \frac{dx}{dt} \frac{dy}{dt} = \frac{-dy}{dx} \frac{dy}{dt} \).

At stated instant, \(x = 3, y = 4 \), hyp = 5, \(\frac{dy}{dx} = 1 \). Thus \(\frac{d\theta}{dt} = -\frac{1}{5(4/5)} = -\frac{1}{4} \) rad/s \(\approx -14.32^\circ /s \).

19. Let \(x \) be edge length of cube. Volume is \(V = x^3 \) and surface area is \(S = 6x^2 \). Maximum error estimates in \(V \) and \(S \) are \(dV = 3x^2 dx \) & \(ds = 12dx \) (the geometrically obvious approximations). At stated instant, \(x = 30 \), \(dx = 0.1 \) cm \(\approx 0.001 \) cm & \(ds = 36 \) cm & 36 cm respectively.

20. Recall \(g(2) = 4 \) and \(g'(x) = (x^2 + 5)^{1/2} \) for all \(x \).

(a) \(L(x) = g(2) + g'(2) \cdot (x-2) = -4 + 3(x-2) \).

(b) Now \(g''(x) = \frac{x}{\sqrt{x^2 + 5}} \).

Quadratic approximation is \(Q(x) = g(2) + g'(2) \cdot (x-2) + \frac{1}{2}g''(2) \cdot (x-2)^2 \) or \(Q(x) = -4 + 3(x-2) + \frac{1}{2}(x-2)^2 \).

21. At desired point, \(y \)-values and slopes are equal. Solve \(x^3 - 3x + 4 = 3(x^3 - x) \) and \(3x^2 - 3 = 3(2x - 1) \) to obtain \((x, y) = (2, 6) \). Common tangent is \(y = 9x - 12 \).

22. [See page 2 for solution to #22 (hard).]

23. Solve \(y = f(x) = 2 + \sqrt{4+7x} \) for \(x \) to obtain \(x = \frac{(y-2)^2 - 4}{7} \), whence \(f^{-1}(x) = \frac{(x-2)^2 - 4}{7} \). See reverse.

24. With \(f(x) = x + e^x \), \(f(0) = 1 \). So \(g(1) = f^{-1}(1) = 0 \) and \(g'(1) = \frac{1}{f'(g(1))} = \frac{1}{f'(0)} = \frac{1}{(1+e)} |_{a=0} = \frac{1}{2} \).

#10 Recall the graph of the ellipse and its two tangent lines through \(P(12, 3) \).

![Graph of the ellipse and tangent lines](image)

- For the ellipse \(x^2 + 4y^2 = 36 \), we have \(y' = \frac{3x}{4y} \) via implicit differentiation. The slope of the tangent line to the ellipse at \((x_0, y_0)\) is \(m = \frac{-x_0}{4y_0} \), our first equation.

- The point \((x_0, y_0)\) is on the ellipse. This gives our second equation, \(x_0^2 + 4y_0^2 = 36 \).

- The point \((x_0, y_0)\) and \(P(12, 3) \) are on the tangent line at \((x_0, y_0)\). This gives \(3 - y_0 = m(12 - x_0) \), which is our third equation.

- Solving these three equations simultaneously for \(m \), \(x_0 \), and \(y_0 \) gives two solutions. The first is \(m = 0 \), \(x_0 = 0 \), \(y_0 = 3 \), which you can immediately see by looking at the graph. The second is \(m = \frac{2}{3} \), \(x_0 = \frac{24}{5} \), and \(y_0 = -\frac{9}{5} \).

- With this information, the two tangent lines are \(y = 3 \) and \(y = -\frac{9}{5} + \frac{2}{3} (x - \frac{24}{5}) \) or \(y = \frac{2}{3}x - 5 \).

#22 Recall the graph of the parabola \(y = x^2 \) and the inscribed circle \((x - h)^2 + (y - k)^2 = 1^2\).

- The circle’s center \((h, k) = (0, k)\) has \(x \)-coordinate 0 due to the symmetry of the parabola \(y = x^2 \) w.r.t. the \(y \)-axis. Let \(P(c, c^2) \) be where the circle and parabola intersect in the right half-plane (so \(c > 0 \)).

- Here’s the essence. \(P \) lies on both curves and slopes of the tangent lines to said curves at \(P \) are the same. This gives two equations (below) and two unknowns, \(k \) and \(c > 0 \) for which we must simultaneously solve.

- Since \(h = 0 \), the circle’s equation is \(x^2 + (y - k)^2 = 1 \). Implicit differentiation gives \(y' = \frac{x}{k - y} = \frac{c}{c^2 - k} \) at \(P \) for the slope of the tangent line to the circle. The slope of the parabola at \(x = c \) is \(2c \). Setting the slopes equal gives our first equation, \(\frac{c}{c^2 - k} = 2c \). Next, \(P \) lies on the circle. So our second equation is \(c^2 + (c^2 - k)^2 = 1 \).

- Solving the two equations simultaneously for \(c \) and \(k \) with \(c > 0 \) yields \(c = \frac{\sqrt{2}}{2} \) and \(k = \frac{5}{4} \). So the center of the circle is \((h, k) = (0, \frac{5}{4})\).

- As the B52s said, “The party’s gone out of bounds!”

#23 With \(f(x) = 2 + \sqrt{4 + 7x} \), we saw \(f^{-1}(x) = \frac{(x - 2)^2 - 4}{7} \).

The domain of \(f \) is \([-\frac{4}{7}, \infty)\). Its range is \([2, \infty)\). Hence the domain of \(f^{-1} \) is the range of \(f \), \([2, \infty)\), and the range of \(f^{-1} \) is the domain of \(f \), \([-\frac{4}{7}, \infty)\)—next time.

Graphs

![Graph of Problem 6](image)

![Graph of Problem 11](image)

![Graph of Problem 13](image)