DIRECTIONS:

1. The use of a calculator, laptop or cell phone is prohibited.

2. TURN OFF cell phones and put them away. If a cell phone is seen during the exam, your exam will be collected and you will receive a zero.

3. In Part 1 (Problems 1-15), mark the correct choice on your ScanTron using a No. 2 pencil. The ScanTron will not be returned, therefore for your own records, also record your choices on your exam! Each problem is worth 4 points.

4. In Part 2 (Problems 16-20), present your solutions in the space provided. Show all your work neatly and concisely and clearly indicate your final answer. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.

5. Be sure to write your name, section number and version letter of the exam on the ScanTron form.

THE AGGIE CODE OF HONOR

“An Aggie does not lie, cheat or steal, or tolerate those who do.”

Signature: ________________________________

DO NOT WRITE BELOW!

<table>
<thead>
<tr>
<th>Question</th>
<th>Points Awarded</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
PART I: Multiple Choice. 4 points each.

1. Find the y intercept of the line tangent to the graph of $f(x) = (\ln x)^2$ at $x = e$.
 (a) $y = e + 1$
 (b) $y = -1$
 (c) $y = -2$
 (d) $y = 1 - 2e$
 (e) $y = 1$

2. Which of the following expressions is equivalent to $\cos(\arctan x)$?
 (a) $\frac{x}{\sqrt{1 - x^2}}$
 (b) $\frac{\sqrt{1 - x^2}}{x}$
 (c) $\sqrt{x^2 + 1}$
 (d) $\frac{1}{\sqrt{x^2 + 1}}$
 (e) $\frac{x}{\sqrt{x^2 + 1}}$

3. If $g(x)$ is the inverse of $f(x) = \sqrt{x^3 + 3x + 2}$, what is $g'(4)$?
 (a) $\frac{15}{8}$
 (b) $\frac{1}{8}$
 (c) $\frac{15}{4}$
 (d) $\frac{9}{4}$
 (e) $\frac{8}{15}$
4. Find the absolute maximum and absolute minimum for \(f(x) = x^2 + \frac{2}{x} \) over the interval \([\frac{1}{2}, 2]\).

 (a) Absolute maximum: \(y = 5 \), Absolute minimum: \(y = 3 \)
 (b) Absolute maximum: \(y = 4 \), Absolute minimum: \(y = 3 \)
 (c) Absolute maximum: \(y = 5 \), Absolute minimum: \(y = -1 \)
 (d) Absolute maximum: \(y = 4.5 \), Absolute minimum: \(y = -1 \)
 (e) Absolute maximum: \(y = 4.5 \), Absolute minimum: \(y = 3 \)

5. An object is traveling at a speed of 60 m/s when the brakes are fully applied, producing a constant deceleration of 12 meters per second squared. What is the distance covered before the object comes to a stop? Assume the initial position of the object is \(s(0) = 0 \).

 (a) 450 meters
 (b) 210 meters
 (c) 200 meters
 (d) 150 meters
 (e) 310 meters

6. What is the domain of \(f(x) = \ln(1 - \ln x) \)?

 (a) \((0, \infty)\)
 (b) \((1, \infty)\)
 (c) \((0, e)\)
 (d) \((1, e)\)
 (e) \((e, \infty)\)
7. Solve for \(x \): \(\log_{10}(5 - x) + \log_{10}(2 - x) = 1 \).

(a) \(x = 3 \)
(b) \(x = 0 \)
(c) \(x = 7 \)
(d) \(x = 0, x = 7 \)
(e) \(x = 0, x = -\frac{2}{3} \)

8. Find all critical numbers for \(f(x) = \sqrt[3]{x^2 - x - 2} \)

(a) \(x = 2 \) and \(x = -1 \)
(b) \(x = \frac{1}{2} \)
(c) \(x = 2, x = -1 \) and \(x = \frac{1}{2} \)
(d) \(x = -2, x = 1 \) and \(x = 2 \)
(e) \(x = -2, x = 1 \) and \(x = \frac{1}{2} \)

9. Find \(\frac{dy}{dx} \) if \(y = (\tan x)^{\sqrt{3x}} \)

(a) \(\frac{dy}{dx} = (\tan x)^{\sqrt{3x}} \left(\frac{3 \ln(\tan x)}{2\sqrt{3x}} + \frac{\sqrt{3x} \sec^2 x}{\tan x} \right) \)
(b) \(\frac{dy}{dx} = (\tan x)^{\sqrt{3x}} \left(\frac{3 \ln(\tan x)}{2\sqrt{3x}} + \sqrt{3x}(\sec x) \right) \)
(c) \(\frac{dy}{dx} = (\tan x)^{\sqrt{3x}} \left(\frac{3 \ln(\tan x)}{2\sqrt{3x}} + \sqrt{3x}(\cot x) \right) \)
(d) \(\frac{dy}{dx} = (\tan x)^{\sqrt{3x}} \left(\frac{\ln(\tan x)}{2\sqrt{3x}} + \frac{\sqrt{3x} \sec^2 x}{\tan x} \right) \)
(e) \(\frac{dy}{dx} = (\tan x)^{\sqrt{3x}} \left(\frac{\ln(\tan x)}{2\sqrt{3x}} + \frac{\sqrt{3x} \sec^2 x}{\tan x} \right) \)
10. If \(f(x) = \arctan(x^2 + 2x + 3) + \arccos(3x) \), then \(f'(0) = \)

(a) \(\frac{2}{\sqrt{10}} - 3 \)

(b) \(\frac{16}{5} \)

(c) \(\frac{1}{\sqrt{10}} - 3 \)

(d) \(-\frac{14}{5} \)

(e) \(-\frac{2}{5} \)

11. Find the value of the limit: \(\lim_{x \to 0} \frac{2^{3x} - 5^x}{4x} \).

(a) 0

(b) \(\frac{1}{4} \ln \left(\frac{8}{5} \right) \)

(c) \(\frac{1}{4} \ln \left(\frac{2}{5} \right) \)

(d) 1

(e) \(\frac{1}{4} \ln 10 \)

12. Find the intervals where \(f(x) = \frac{\ln x}{x} \) is increasing or decreasing.

(a) \(f(x) \) is increasing on the interval \((0, \frac{1}{e}) \) and decreasing on the interval \(\left(\frac{1}{e}, \infty \right) \).

(b) \(f(x) \) is increasing on the interval \((e, \infty) \) and decreasing on the interval \((0, e) \).

(c) \(f(x) \) is increasing on the interval \(\left(\frac{1}{e}, \infty \right) \) and decreasing on the interval \(\left(0, \frac{1}{e} \right) \).

(d) \(f(x) \) is increasing on the interval \((0, e) \) and decreasing on the interval \((e, \infty) \).

(e) \(f(x) \) is always increasing.
13. If \(f'(x) = 2 \sin x + 4 \cos x - e^x \) and \(f(0) = 5 \), what is \(f(\pi) \)?

(a) \(10 - e^\pi \)
(b) \(4 - e^\pi \)
(c) \(7 - e^\pi \)
(d) \(3 - e^\pi \)
(e) \(6 - e^\pi \)

14. A sample of radium initially has a mass of 100 mg. After 1500 years, the mass has been reduced to 30 mg. What is the size of the mass after 350 years? Assume the size of the mass follows the law of exponential decay.

(a) \(100 \left(\frac{10}{3} \right)^{7/30} \) mg
(b) \(100 \left(\frac{10}{3} \right)^{30/7} \) mg
(c) \(100 \left(\frac{3}{10} \right)^{30/7} \) mg
(d) \(100 \left(\frac{3}{10} \right)^{7/30} \) mg
(e) None of these

15. The graph shown below is the graph of the second derivative of \(f(x) \), that is \(f''(x) \). Where is \(f(x) \) concave up?

(a) \((1, \infty)\)
(b) \((-\infty, -3) \cup (3, \infty)\)
(c) \((-\infty, 1)\)
(d) \((-\infty, -6) \cup (2, 8)\)
(e) \((-6, 2) \cup (8, \infty)\)
PART II: Work Out

Directions: Present your solutions in the space provided. Show all your work neatly and concisely and Box your final answer. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.

16. (8 pts) You have 200 feet of fencing to construct a pen with four equal sized stalls as shown. What are the dimensions of the pen of largest area and what is the largest area?

17. (6 pts) Find the inverse of \(f(x) = 5e^x \div (4 + e^x) \).
18. Given $f(x) = 4xe^{5x}$:

(i) (3 pts) Find the intervals where is $f(x)$ increasing or decreasing.

(ii) (2 pts) Find the local maximum and/or minimum for $f(x)$, if any.

(iii) (3 pts) Find the intervals of concavity for $f(x)$.

(iv) (2 pts) Find the point(s) of inflection for $f(x)$, if any.
19. (8 pts) Find $\lim_{x \to \infty} \left(1 - \frac{4}{x} \right)^x$

20. (8 pts) Sketch a curve satisfying the following conditions.

 (i) The domain of $f(x)$ is all real numbers.

 (ii) $f(2) = -2, f(0) = 0, f'(2) = 0$

 (iii) $f'(x) < 0$ if $0 < x < 2$, $f'(x) > 0$ if $x > 2$

 (iv) $f''(x) < 0$ if $0 \leq x < 1$ or if $x > 4$

 (v) $f''(x) > 0$ if $1 < x < 4$

 (vi) $\lim_{x \to \infty} f(x) = 2$

 (vii) The graph of $f(x)$ is symmetric about the y axis.