Summer 2014 MATLAB Assignment 1

Work the following problems (NOTE: these are RELATED TO the corresponding page and problem number from Gilat. Do NOT work the actual problems from the Lab Manual, or you will receive NO CREDIT!

1. g028x07 (Assigning variables: see pp16-19 and basic functions: see pp14-15):

Define the variable x as $x=9.75$, then evaluate the following:
(a) $4 x^{3}-14 x^{2}-6.32 x+7.3$
(b) $\frac{e^{\sqrt{3}}}{\sqrt[3]{0.02 \cdot 3.1^{2}}}$
(c) $\log _{10}\left(\left(x^{2}-x^{3}\right)^{2}\right)$
2. $\mathbf{g 0 3 4 x} \mathbf{4 0}$ (Assigning variables: see pp16-19 and basic functions: see pp14-15):

The distance d from a point $\left(x_{0}, y_{0}\right)$ to a line $A x+B y+C=0$ is given by $d=\frac{\left|A x_{0}+B y_{0}+C\right|}{\sqrt{A^{2}+B^{2}}}$. Determine the distance from the point $(3,-4)$ to the line $2 x-7 y-10=0$. First define the variables A, B, C, x_{0}, and y_{0}, then calculate d.
3. $\mathbf{g 0 5 5 x} \mathbf{0 7}$ (equally spaced vectors: see pp 37-38):

Create a row vector in which the first element is 0 , the last element is 42 , with an increment of 3 between the elements $\langle 0,3,6, \cdots, 42\rangle$
4. g093x32 (matrices: see pp39-40 and solving equations with matrices: see pp71-72):

Solve the following system of five linear equations:

$$
\begin{gathered}
1.5 x-2 y+z+3 u+0.5 w=7.5 \\
3 x+y-z+4 u-3 w=16 \\
2 x+6 y-3 z-u+3 w=78 \\
5 x+2 y+4 z-2 u+6 w=71 \\
-3 x+3 y+2 z+5 u+4 w=54
\end{gathered}
$$

