MATH 152, FALL 2021
common exam ii - Version \mathbf{A}

LAST NAME(print): \qquad FIRST NAME (print): \qquad

INSTRUCTOR: \qquad

SECTION NUMBER: \qquad

DIRECTIONS:

1. The use of a calculator, laptop or computer is prohibited.
2. TURN OFF cell phones and put them away. If a cell phone is seen during the exam, your exam will be collected and you will receive a zero.
3. In Part 1 (Problems 1-15), mark the correct choice on your ScanTron using a No. 2 pencil. The scantrons will not be returned, therefore for your own records, also record your choices on your exam!
4. In Part 2 (Problems 16-19), present your solutions in the space provided. Show all your work neatly and concisely and clearly indicate your final answer. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.
5. Be sure to write your name, section number and version letter of the exam on the ScanTron form.
6. Again. The use of a calculator, laptop or computer is prohibited.

THE AGGIE HONOR CODE
"An Aggie does not lie, cheat, or steal, or tolerate those who do."

Signature: \qquad

FOR INSTRUCTOR USE ONLY

Question	Points Awarded	Points
$1-15$	ScanTron	60
16		12
17		12
18		8
19		8
TOTAL		100

Page 2 of 11

Part 1: Multiple Choice (4 points each)

1. Which statement is true about the integral $\int_{0}^{4} \frac{2}{(x-3)^{2}} d x$?
(a) Diverges
(b) Converges to $\frac{8}{3}$
(c) Converges to $\frac{4}{3}$
(d) Converges to $-\frac{8}{3}$
(e) Converges to $-\frac{4}{3}$
2. Which sequence is both bounded and increasing?
(a) $a_{n}=1-\frac{2}{n}$
(b) $a_{n}=\ln n$
(c) $a_{n}=\sin (2 n \pi)$
(d) $a_{n}=e^{-n}$
(e) None of these
3. The integral $\int_{0}^{\infty} e^{-2 x} d x$
(a) diverges
(b) converges to 0
(c) converges to $\frac{1}{4}$
(d) converges to $\frac{1}{2}$
(e) converges to 2
4. Which of the following integrals is equivalent to $\int \sqrt{4 x^{2}-9} d x$?
(a) $2 \int \sec \theta \tan ^{2} \theta d \theta$
(b) $\frac{9}{2} \int \tan \theta d \theta$
(c) $\frac{9}{2} \int \sec \theta \tan ^{2} \theta d \theta$
(d) $\frac{9}{2} \int \sec ^{2} \theta \tan \theta d \theta$
(e) $2 \int \sec ^{2} \theta \tan \theta d \theta$
5. After an appropriate substitution, the integral $\int \sqrt{9-x^{2}} d x$ is equivalent to which of the following?
(a) $9 \int \sec \theta \tan ^{2} \theta d \theta$
(b) $3 \int \cos \theta d \theta$
(c) $9 \int \sec ^{3} \theta d \theta$
(d) $9 \int \cos ^{2} \theta d \theta$
(e) $3 \int \tan \theta d \theta$
6. Determine whether the following series converges or diverges. If it converges, find the sum.

$$
\sum_{n=1}^{\infty}\left(\frac{3}{n}-\frac{3}{n+1}\right)
$$

(a) Diverges
(b) Converges to 0
(c) Converges to 1
(d) Converges to $\frac{3}{2}$
(e) Converges to 3
7. Evaluate $\int_{0}^{1} \frac{4 x^{2}+5}{2 x+1} d x$
(a) $2 \ln 3$
(b) $3 \ln 3$
(c) $4 \ln 3$
(d) $6 \ln 3$
(e) None of these
8. Write out the form of the partial fraction decomposition of the function

$$
f(x)=\frac{x^{3}-2 x^{2}-5 x+4}{(x+2)^{2}\left(x^{2}-1\right)\left(x^{2}+5 x+7\right)}
$$

(a) $\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-1}+\frac{D}{x+1}+\frac{E x+F}{x^{2}+5 x+7}$
(b) $\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C x+D}{x^{2}-1}+\frac{E x+F}{x^{2}+5 x+7}$
(c) $\frac{A}{(x+2)^{2}}+\frac{B}{x-1}+\frac{C}{x+1}+\frac{D x+E}{x^{2}+5 x+7}$
(d) $\frac{A}{(x+2)^{2}}+\frac{B}{x^{2}-1}+\frac{C x+D}{x^{2}+5 x+7}$
(e) $\frac{A x+B}{(x+2)^{2}}+\frac{C x+D}{x^{2}-1}+\frac{E x+F}{x^{2}+5 x+7}$
9. The recursive sequence given below is bounded and increasing. Determine whether the sequence converges or diverges. If it converges, find the limit of the sequence.

$$
a_{1}=4, \quad a_{n+1}=8-\frac{15}{a_{n}}
$$

(a) The sequence diverges.
(b) 3
(c) 4
(d) 5
(e) 8
10. Which statement is true about the integral $\int_{1}^{\infty} \frac{3 \sin ^{2} x}{x^{2}} d x$?
(a) The integral converges by comparison to $\int_{1}^{\infty} \frac{1}{x} d x$
(b) The integral diverges by comparison to $\int_{1}^{\infty} \frac{3}{x^{2}} d x$
(c) The integral converges by comparison to $\int_{1}^{\infty} \frac{3}{x^{2}} d x$
(d) The integral diverges by comparison to $\int_{1}^{\infty} \frac{1}{x} d x$
(e) None of these
11. Consider the series $\sum_{n=1}^{\infty} a_{n}$ whose n-th partial sum is given by $s_{n}=\frac{2}{3-e^{-2 n}}$. What is $\sum_{n=1}^{\infty} a_{n}$?
(a) 0
(b) 1
(c) $\frac{1}{3}$
(d) $\frac{2}{3}$
(e) 2
12. Which of the following integrals is equivalent to $\int \frac{1}{\left(x^{2}-4 x+5\right)^{3 / 2}} d x$?
(a) $\frac{1}{9} \int \cos \theta d \theta$
(b) $\int \cos ^{3} \theta d \theta$
(c) $\frac{1}{27} \int \cos ^{3} \theta d \theta$
(d) $\int \sec \theta d \theta$
(e) $\int \cos \theta d \theta$
13. Use the Remainder Estimate for the Integral Test to determine the minimum number of terms needed to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ to within $\frac{1}{80}$.
(a) 4 terms
(b) 5 terms
(c) 6 terms
(d) 7 terms
(e) 8 terms
14. The integral $\int_{0}^{1} \ln x d x$
(a) diverges
(b) converges to 0
(c) converges to e
(d) converges to 1
(e) converges to -1
15. Which of the following sequences converges?

$$
\begin{array}{lll}
\text { (i) } a_{n}=\cos \left(\frac{1}{n}\right) & \text { (ii) } a_{n}=\frac{(-1)^{n} 3 n}{n+1} & \text { (iii) } a_{n}=\ln \left(n^{2}+1\right)-\ln n
\end{array}
$$

(a) Only (i) converges
(b) Only (ii) converges
(c) Only (i) and (iii) converge
(d) Only (i) and (ii) converge
(e) All three sequences diverge

Part 2: Work Out

Directions: Present your solutions in the space provided. Show all your work neatly and concisely and box your final answer. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.
16. (12 pts) Evaluate $\int \frac{-2 x+4}{\left(x^{2}+1\right)(x-1)} d x$
17. (12 pts) Evaluate $\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x$.
18. (8 pts) Consider the following series

$$
\sum_{n=1}^{\infty} \frac{3^{n-1}+1}{3^{2 n}}
$$

(a) Determine whether the series converges or diverges, and state the reason.
(b) If it converges, find its sum. If it diverges, write DIVERGES.
19. (8 pts) Use the Integral Test to determine whether $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converges or diverges. Support your answer.

