$\overset{\text{MATH 152, Fall 2022}}{\text{common exam III - version}}\,B$

LAS'	ST NAME(print):	FIRST NAME(print):			
INST	TRUCTOR:				
SEC'	TION NUMBER:				
DIR	RECTIONS:				
1.	. The use of a calculator, la	ptop or computer is prohibited.			
2.	. TURN OFF cell phones a and you will receive a zero	nd put them away. If a cell phone is seen during the exam, your exam will be collected .			
3.		ct choice on your ScanTron using a No. 2 pencil. The scantrons will not be returned, ords, also record your choices on your exam!			
4.		ations in the space provided. Show all your work neatly and concisely and clearly indicate l be graded not merely on the final answer, but also on the quality and correctness of the			
5.	Be sure to fill in your form.	name, UIN, section number and version letter of the exam on the ScanTron			
		THE AGGIE CODE OF HONOR			
	"An Agg	gie does not lie, cheat or steal, or tolerate those who do."			

Signature:

This page left intentionally blank.

PART I: Multiple Choice. 4 points each

- 1. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{n!(4x-1)^n}{3^n}$.
 - (a) $\frac{1}{4}$
 - (b) None of these.
 - (c) ∞
 - (d) $\frac{3}{4}$
 - (e) 0
- 2. Use a MacLaurin series to express $f(x) = xe^{2x^2}$ as a power series centered at x = 0.
 - (a) $\sum_{n=0}^{\infty} \frac{2^n x^{2n+1}}{n!}$
 - (b) $\sum_{n=0}^{\infty} \frac{2^n x^{2n}}{n!}$
 - (c) $\sum_{n=0}^{\infty} \frac{2^{2n} x^{4n+1}}{(2n)!}$
 - (d) $\sum_{n=0}^{\infty} \frac{(-2)^n x^{2n+1}}{n!}$
 - (e) None of these.
- 3. Suppose that the series $\sum_{n=1}^{\infty} c_n x^n$ converges at x=-4 and diverges at x=6. Which of the following statements is true?
 - (I) $\sum_{n=1}^{\infty} c_n 4^n$ converges.
 - (II) $\sum_{n=1}^{\infty} c_n 7^n$ diverges.
 - (III) $\sum_{n=1}^{\infty} c_n 5^n$ may or may not converge.
 - (a) III only
 - (b) I and II only
 - (c) II and III only
 - (d) I, II, and III
 - (e) II only

- 4. Write $f(x) = \frac{x^3}{1+4x^2}$ as a power series centered at 0.
 - (a) $\sum_{n=0}^{\infty} (-4)^n x^{2n+3}$
 - (b) $\sum_{n=0}^{\infty} 4^n x^{2n+3}$
 - (c) $\sum_{n=0}^{\infty} (-4)^n x^{2n}$
 - (d) $\sum_{n=0}^{\infty} (-4)^n x^{2n+6}$
 - (e) $\sum_{n=0}^{\infty} 4^n x^{2n+6}$
- 5. What is the value of the limit, L, that is used in the ratio test for this series? $\sum_{n=1}^{\infty} \frac{n! \ n! \ 3^n}{(2n)!}$
 - (a) $L = \infty$
 - (b) L = 0
 - (c) $L = \frac{3}{2}$
 - (d) L = 3
 - (e) $L = \frac{3}{4}$
- 6. Which of these is the MacLaurin series for $f(x) = x^4 \arctan(2x)$?
 - (a) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} x^{2n+5}}{2n+1}$
 - (b) $\sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+5}}{2n+1}$
 - (c) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{n+1} x^{2n+5}}{(2n+1)!}$
 - (d) None of these.
 - (e) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n+5}}{2n+1}$

- 7. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{4^n (x-3)^n}{n!}.$
 - (a) $\frac{1}{4}$
 - (b) None of these.
 - (c) 4
 - (d) ∞
 - (e) 0
- 8. Find the 15th derivative at x = 4 for $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (x-4)^n}{n3^n}$
 - (a) None of these.
 - (b) $f^{(15)}(4) = \frac{14!}{3^{15}}$
 - (c) $f^{(15)}(4) = \frac{1}{15(3^{15})}$
 - (d) $f^{(15)}(4) = \frac{-14!}{3^{15}}$
 - (e) $f^{(15)}(4) = \frac{-1}{15(3^{15})}$
- 9. If we find the Taylor Polynomial for $f(x) = \frac{1}{x^3}$ centered at 7, what is the coefficient of the $(x-7)^3$ term?
 - (a) $\frac{-10}{7^6}$
 - (b) $\frac{-6!}{7^6}$
 - (c) $\frac{10}{7^6}$
 - (d) $\frac{6!}{7^6}$
 - (e) $\frac{-10}{x^6}$
- 10. Suppose that $0 \le a_n \le b_n$ for every positive integer n. Which of the following statements is always true?
 - (a) If $\sum_{n=1}^{\infty} a_n$ is convergent, then so is $\sum_{n=1}^{\infty} b_n$.
 - (b) If $\lim_{n\to\infty} b_n = 0$, then $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (c) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.
 - (d) none of these are always true.
 - (e) If $\sum_{n=1}^{\infty} b_n$ is divergent, then so is $\sum_{n=1}^{\infty} a_n$.

- 11. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges to s. based on the Alternating Series Estimation Theorem, which statement is true?
 - (a) $|R_7| = |s s_7| < \frac{1}{8}$
 - (b) $|R_7| = |s s_7| < \frac{1}{64}$
 - (c) $|R_7| = |s s_7| < \frac{1}{7}$
 - (d) None of these.
 - (e) $|R_7| = |s s_7| < \frac{1}{49}$
- 12. Which series is conditionally convergent?
 - (a) $\sum_{n=0}^{\infty} \frac{7}{n^5}$
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/4}}$
 - (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$
 - (d) $\sum_{n=0}^{\infty} \frac{n!}{2^n}$
 - (e) None of these.
- 13. Which series is absolutely convergent?
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$
 - (b) None of these.
 - (c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
 - (d) $\sum_{n=0}^{\infty} \frac{n!}{2^n}$
 - (e) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{4/3}}$

- 14. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n 5^{2n}}{3^{2n+1} (2n)!}$
 - (a) $\frac{1}{3}\cos\left(\frac{5}{3}\right)$
 - (b) $\frac{1}{3}\sin\left(\frac{5}{3}\right)$
 - (c) $\frac{1}{3}\arctan\left(\frac{5}{3}\right)$
 - (d) None of these
 - (e) $\frac{1}{3}e^{-5/3}$
- 15. Find the Taylor polynomial $T_4(x)$, the 4th degree Taylor polynomial, for the function $f(x) = \frac{1}{1 + 5x^2}$ centered at a = 0?
 - (a) $T_4(x) = 1 5x^2 + 25x^4 125x^6$
 - (b) $T_4(x) = 1 + 5x^2 + 25x^4 + 125x^6$
 - (c) $T_4(x) = 1 + 5x^2 25x^4 + 125x^6$
 - (d) $T_4(x) = 1 5x^2 + 25x^4$
 - (e) $T_4(x) = 1 + 5x^2 + 25x^4$
- 16. Which of the following is the MacLaurin series for $f(x) = x \sin(x^2)$?
 - (a) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{(2n+1)!}$
 - (b) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(2n)!}$
 - (c) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+2}}{(2n+1)!}$
 - (d) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+3}}{(2n+1)!}$
 - (e) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{(2n)!}$

PART II WORK OUT

<u>Directions</u>: Present your solutions in the space provided. *Show all your work* neatly and concisely and *Box your final answer*. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.

17. (5 points each) Determine whether the following series converge or diverge. Clearly explain your reasoning and state any tests used.

(a)
$$\sum_{n=1}^{\infty} \frac{6+5\cos n}{n}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3 + 7}$

18. (8 points) Find the MacLaurin series representation for the function $f(x) = \frac{1}{(1-3x)^2}$.

19. (10 points) Find the radius of convergence and the interval of convergence of the power series. You must test your endpoints for convergence.

$$\sum_{n=1}^{\infty} \frac{(-2)^n (x-5)^n}{n8^n}$$

20. (8 points) Find the Taylor series for $f(x) = xe^x$ about a = 3. Express your answer in summation notation.

DO NOT WRITE IN THIS TABLE.

DO NOT WHILE III THIS IMBLE.				
Question	Points Awarded	Points		
1-16		64		
17		10		
18		8		
19		10		
20		8		
		100		