MATH 152, Spring 2022
EXAM III - VERSION $\boldsymbol{A}$

LAST NAME(print):
solutions
FIRST NAME(print): $\qquad$

UIN: $\qquad$

INSTRUCTOR: $\qquad$

SECTION NUMBER: $\qquad$

## DIRECTIONS:

1. No calculator, cell phones, or other electronic devices may be used, and they must all be put away out of sight.
2. TURN OFF cell phones and put them away. If a cell phone is seen during the exam, your exam will be collected and you will receive a zero.
3. In Part 1, mark the choice on your ScanTron using a No. 2 pencil. The scantrons will not be returned, therefore for your own records, also record your choices on your exam!
4. In Part 2, present your solutions in the space provided. Show all your work neatly and concisely and clearly indicate your final answer. You will be graded not merely on the final answer, but also on the quality and ness of the work leading up to it.
5. Be sure to fill in your name, UIN, section number and version letter of the exam on the ScanTron form.

THE AGGIE CODE OF HONOR
"An Aggie does not lie, cheat or steal, or tolerate those who do."

Signature: $\qquad$

PART I: Multiple Choice. 4 points each.

1. Which of the following statements is true for the three series given below?
I. $C A$ since
(I) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{3}}$
(II) $\sum_{n=2}^{\infty} \frac{(-1)^{n} \ln n}{n}$
(III) $\sum_{n=2}^{\infty} \frac{(-1)^{n}(n)}{\ln n}$
(a) I converges absolutely, II and III converge conditionally. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$ converges
(b) I converges absolutely, II converges conditionally, and III diverges .
(c) I and II converge conditionally, and III diverges.
(d) I converges conditionally, II and III diverge.
(e) I and II converge absolutely and III converges conditionally.
$\pi$

$$
\begin{aligned}
& \text { Diverges by T.D. } \\
& \lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{\ln n} \neq 0
\end{aligned}
$$

II. $C C$ since
$\sum_{n=2}^{\infty} \frac{(-1)^{2} \ln }{n}$ by AST
bot $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ $\sum_{n=2} n_{\text {by I.T. }}$.
2. What is the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(x-2)^{n}(2 n+1)!}{(n+1)!}$ ?
$\underset{\substack { \text { (a) } \\ \begin{subarray}{c}{\{2\} \\ \text { (b) }(-1.5, \infty) \\ \text { (c) }\{0.5] \\ \text { (d) }\{0\} \\ \text { (e) }[1.5,2.5){ \text { (a) } \\ \begin{subarray} { c } { \{ 2 \} \\ \text { (b) } ( - 1 . 5 , \infty ) \\ \text { (c) } \{ 0 . 5 ] \\ \text { (d) } \{ 0 \} \\ \text { (e) } [ 1 . 5 , 2 . 5 ) } }\end{subarray}}{ } \lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}(2 n+3)!}{(n+2)!} \cdot \frac{(n+1)!}{(x-2)^{n}(2 n+1)!}\right|$

$$
=\lim _{n \rightarrow \infty}\left|\frac{(x-2)(2 n+3)(2 n+2)}{n+2}\right|=\infty \quad I=\{2\}
$$

3. If we find the third degree Taylor Polynomial for $f(x)=e^{-2 x}$ centered at 4, what is the coefficient of $(x-4)^{3}$ ?

(b) $-\frac{4}{3} e^{-8}$
(c) $\frac{2}{3} e^{-8}$ coefficient of $(x-4)^{3}$ $\begin{aligned} & \text { is therefore -ax } \\ & f=e^{-2 x}\end{aligned}$


$$
\frac{f^{\prime \prime \prime}(4)}{3!}=\frac{-8 e^{-8}}{6}=\frac{-4 e^{-8}}{3}
$$

$$
\begin{aligned}
& f^{\prime=}=-2 e^{-2 x} \\
& f^{\prime \prime}=4 e^{-2 x} \\
& f^{\prime \prime}=-8 e^{-2 x}
\end{aligned}
$$

4. If $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n+1}}{5^{n}}(x-2)^{n}$, find $f^{(25)}(2)$, that is, the $25^{t h}$ derivative of $f(x)$ evaluated at $x=2$.
(a) $f^{(25)}(2)=\frac{3^{(26)}(25)!}{5^{(25)}}$
(b) $f^{(25)}(2)=\frac{(-1) 3^{(25)}}{5^{(25)}(25)!}$

equate

(e) $f^{(25)}(2)=\frac{(-1) 3^{(26)}(25)!}{5^{(25)}}$

 by $n$ !
5. When we apply the Ratio Test to the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 3^{2 n}}{n^{2}+100}$, we find
(a) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{3}$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n+1} q^{n}}{n^{2}+100} \\
& \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2} q^{n+1}}{(n+1)^{2}+100} \cdot \frac{n^{2}+100}{(-1)^{n+1} q^{n}}\right|=9
\end{aligned}
$$


(c) $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\frac{1}{2}$
(d) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=3$
(e) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=9$
6. Which of the following is a power series representation for $f(x)=\frac{x}{x^{3}+8}$ ?
(a) $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{8^{n+1}},|x|<2$
(b) $f(x)=\sum_{n=0}^{\infty} \frac{x^{3 n+3}}{8^{n+1}},|x|<2$
(c) $f(x)=\sum_{n=0}^{\infty} \frac{x^{3 n+1}}{8^{n+1}},|x|<\frac{1}{2}$
(d) $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{8^{n+1}},|x|<\frac{1}{2}$
(e) $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+3}}{8^{n+1}},|x|<2$

$$
=\frac{x}{8\left(1+\frac{x^{3}}{8}\right)}
$$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3^{n+1}}}{8^{n+1}}
$$

$$
\begin{aligned}
& \left|\frac{-x^{3}}{8}\right|<1 \\
& |x|<2
\end{aligned}
$$

7. Which of the following is a power series representation for $f(x)=\frac{1}{(1-3 x)^{2}}$ ?
(a) $f(x)=\sum_{n=0}^{\infty} 3^{n} n x^{n-1},|x|<\frac{1}{3}$
(b) $f(x)=-\sum_{n=0}^{\infty} 3^{n-1}(n+1) x^{n},|x|<\frac{1}{3}$

$$
\begin{aligned}
& \int \frac{d x}{(1-3 x)^{2}}=\frac{1}{3} \cdot \frac{1}{1-3 x}=\frac{1}{3} \sum_{n=0}^{\infty}(3 x)^{n} \\
& \frac{1}{(1-3 x)^{2}}=\frac{d}{d x} \sum_{n=0}^{\infty} 3^{n-1} x,|3 x|<1 \\
& n-\left.1 x\right|^{1} \frac{1}{3}
\end{aligned}
$$

(c) $f(x)=\sum_{n=0}^{\infty} 3^{n}(n+1) x^{n},|x|<\frac{1}{3}$
(d) $f(x)=-\sum_{n=0}^{\infty} 3^{n} n x^{n-1},|x|<\frac{1}{3}$
(e) $f(x)=\sum_{n=0}^{\infty} 3^{n-1}(n+1) x^{n},|x|<\frac{1}{3}$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} 3^{n-1} n x^{n-1} \\
& =\sum_{n=0}^{\infty} 3^{n}(n+1) x^{n}
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty} 3(n+1)^{n}
$$


(d) $e^{-3 \pi^{2}}$
(e) $e^{3 \pi^{2}}$
(a) 0
(b) -1
(c) $\cos \left(3 \pi^{2}\right)$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

9. Using The Alternating Series Estimation Theorem, what is the minimum number of terms needed to find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$ to within $\frac{1}{165}$ ?
(a) $n=6$
(b) $n=5$
(c) $n=4$
(d) $n=3$

$$
\begin{array}{r}
\left|R_{n}\right| \leq b_{n+1}=\frac{1}{(n+1)^{3}} \text {, } \begin{array}{l}
\text { and she serest value } \\
\text { of n that makes }
\end{array} \\
\begin{array}{r}
\frac{1}{(n+1)^{3}}<\frac{1}{165} \text { is } n=5 \text {, since } \\
\frac{1}{6^{3}}=\frac{1}{216} \text { yet } \\
\frac{1}{5^{3}}=\frac{1}{125}
\end{array}
\end{array}
$$

(e) $n=7$

The R.T. is inconclusive if the series is void of factorials and expenentials, which is true for (6)
10. For which of the following series is the Ratio Test inconclusive?
fo $\tilde{E}^{(t-1)+1+1}$ (b) only since the is the only
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4 n}$ series that $n_{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n}}\right|=l$.
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4^{n}}$ note: for $(a)$, and (c) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0$.
(d) $\sum_{\substack{\infty \\ n=1 \\ \infty}}^{\infty=1 \operatorname{lin}(n)}$ ( for (d), $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$.
(e) $\sum_{n=1}^{\infty} \frac{\cos (n)}{n!}$

$$
\text { for }(c), \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{4}
$$

11. Given the series $\sum_{n=1}^{\infty} c_{n}(x+2)^{n}$ converges at $x=3$. Which of the following statements must be true? ( The series $\sum_{n=1}^{\infty} c_{n}(x+2)^{n}$ diverges at $x=4$. center of series is -2. W he series $\sum_{n=1}^{\infty} c_{n}(x+2)^{n}$ diverges at $x=-8$.
(c) The series $\sum_{n=1}^{\infty} c_{n}(x+2)^{n}$ converges at $x=-5$. (1) The series $\sum_{n=1}^{\infty} c_{n}(x+2)^{n}$ converges at $x=-7$.

12. Which of the following is the correct Maclaurin series for $f(x)=x \sin (5 x)$ ?
(a) $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2 n+1} x^{2 n+1}}{(2 n+1)!}$
(b) $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2 n+2} x^{2 n+1}}{(2 n+1)!}$

$$
\begin{aligned}
& f(1)=x \sum_{n=0}^{\infty} \frac{(-1)^{n}(5 x)^{2 n}}{(2 n+1)!} \\
& =\pi \sum_{n=0}^{\infty} \frac{(-1)^{2 n+1} 2^{2 n+1}}{(2 n+1)_{1}^{2 n}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2 n+1}}{(2 n+1)}
\end{aligned}
$$

(c) $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2 n+1} x^{2 n+2}}{(2 n+1)!}$
(d) $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n} x^{2 n+2}}{(2 n+1)!}$
(e) $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2 n+2} x^{2 n+2}}{(2 n+1)!}$
13. The series $\sum_{n=1}^{\infty} \frac{\sin (n)+5}{n^{3 / 2}}$
(a) Converges by the comparison test with $\sum_{n=1}^{\infty} \frac{4}{n^{3 / 2}}$
(b) Converges by the comparison test with $\sum_{n=1}^{\infty} \frac{5}{n^{3 / 2}}$
(c) Converges by the comparison test with $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$
(d) Converges by the comparison test with $\sum_{n=1}^{\infty} \frac{6}{n^{3 / 2}}$
(e) None of the above


## so both converge by comparison test.

14. For what values of $p$ does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}}$ converge?


True or False. On your scantron, bubble ' $a$ ' if true and bubble ' $b$ ' if false. One point each.
15. If $0 \leq a_{n} \leq b_{n}$ for every positive integer $n$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ also converges.
16. If $0 \leq a_{n} \leq b_{n}$ for every positive integer $n$ and $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges. Tue
17. If $0 \leq a_{n} \leq b_{n}$ for every positive integer $n$ and $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
18. If $0 \leq a_{n} \leq b_{n}$ for every positive integer $n$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

PART II: Free Response: Show all work and box your final answer!
19. (12 pts) Find the radius and interval of convergence of the series $\sum^{\infty} \frac{(x+3)^{n}}{4^{n}(2 n+1)}$. Be sure to test the endpoints of

$$
\begin{aligned}
& \text { RT: } \lim _{n \rightarrow \infty}\left|\frac{(x+3)^{n+1}}{4^{n+1}(2 n+3)} \cdot \frac{4^{n}(2 n+1)}{(x+3)^{n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{(x+3)(2 n+1)}{4(2 n+3)}\right|=\left|\frac{x+3}{4}\right| . \\
& \frac{|x+3|}{4}<1 \rightarrow|x+3|<4 \rightarrow-4<x+3<4 \\
& R=4 \quad-7<x<1
\end{aligned}
$$

Test endpoint S: $\cdot x=-7 \sum_{n=1}^{\infty} \frac{(-4)^{n}}{4^{n}(2 n+1)}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+1}$

$$
\begin{aligned}
A S T: b_{n}=\frac{1}{2 n+1} \quad \lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0 \\
\frac{1}{2 n+3}<\frac{1}{2 n+1} \rightarrow b n \text { dneseceos }
\end{aligned}
$$

so by AST the series converges at $x=-7$

$$
\begin{aligned}
& \text { es at } x=-7 \\
& -x=1: \sum_{n=1}^{\infty} \frac{4^{n}}{4^{n}(2 n+1)}=\sum_{n=1}^{\infty} \frac{1}{2 n+1} \\
& \hline 10 c t: \frac{d x}{2 x+1}
\end{aligned}
$$

which diverges by either integral test: $\int_{1}^{\infty} \frac{d x}{\partial x+1}$ $\left.\frac{1}{2} \ln |2 x+1|\right|_{1} ^{\infty}=\infty$ or $\angle C T \lim _{n \rightarrow \infty} \frac{\frac{1}{2 n+1}}{\frac{1}{2 n}}=1>0$ and $\sum \frac{1}{2 n}$ series diverge so bath $b_{n}=\frac{1}{2 n} \quad n \rightarrow \infty \frac{\frac{1}{2 n}}{\frac{1}{2 n}}=1>0$ and $\sum_{\text {serve, diverges at at } t=1} \frac{a_{n}}{} \quad I=[-7,1)$

$$
\begin{aligned}
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& \text { a.) ( } 5 \mathrm{pts} \text { ) Using the kn } \\
& x^{3} \cos \left(\frac{x}{3}\right)=x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{2}\left(\frac{x}{3}\right)^{2 n}}{(2 n)!}=x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{2 n} x^{2 n}}{3^{a n}(2 n)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+3}}{3^{2 n}(2 n)!}, R=\infty \\
& \int_{0}^{0.1} x^{3} \cos \left(\frac{x}{3}\right) d x=\int_{0}^{0.1} \sum_{n=0}^{0} \frac{(-1)^{n} x^{2 n}(2 n)!}{2^{2 n}} d x \\
& =\left.\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+4}}{3^{2 n}(2 n)!(2 n+4)}\right|_{0} ^{0.1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(0.1)^{2 n+4}}{3^{2 n}(2 n)!(2 n+4)}
\end{aligned}
$$

21. Using a comparison test or limit comparison test, determine whether the series below converge or diverge.

Show all work, as illustrated in class, by naming the test, applying the test, and drawing the correct conclusion.

$$
{ }^{(a)(4 p \mathrm{pt})} \sum_{n=1}^{\infty} \frac{2^{n}}{n+5^{n}} \leq \sum_{n=1}^{\infty} \frac{2^{n}}{5^{n}}=\sum_{n=1}^{\infty}\left(\frac{2}{5}\right)^{n}
$$

a convergent geometric series $\left|\sigma=\left|\frac{2}{5}\right|<1\right.$. By CJ, bath series converge


$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty}\left(\frac{\frac{1}{\sqrt[3]{4 n^{3}+4 n+1}}}{\frac{1}{\sqrt[3]{4 n^{3}}}}\right)=1>0
$$

which
and $\sum_{n=3}^{\infty} \frac{1}{\sqrt[3]{{4 n^{3}}^{2}}}$ is a divergent $p=1$-series positive font limit $p=1$. Both diverge
 convergent

$$
\sum_{n=1}^{\infty}\left|\frac{\cos n}{n^{4}+n^{2}+\sqrt{n}}\right|<\sum_{n=1}^{\infty} p
$$ $\frac{1}{n^{4}}$, a convergent $p$-series, $p=1$ original series converges absolutely thus converges.

22. (7 pts) Find the Taylor Series for $f(x)=\frac{1}{x^{3}}$ centered at 5. You do not need to find the radius or interval of convergence.
$f(x)=\frac{1}{x^{3}}=\sum_{n=0}^{\infty} \frac{f^{n}(5)}{n!}(x-5)^{n}$

$$
\begin{aligned}
& f(x)=\frac{1}{x^{3}} \quad f^{n}(x)=\frac{(-1)(n+2)!}{2 x^{n+3}} \\
& f^{\prime}(x)=\frac{-3}{x^{4}} \\
& f^{\prime \prime}(x)=\frac{4 \cdot 3}{x^{5}}=\frac{4!}{2 x^{5}} \\
& f^{n}(5)=\frac{(-1)(n+2)!}{(2) 5^{n+3}} \\
& f^{\prime \prime}(x)=\frac{-5 \cdot 4 \cdot 3}{x^{6}}=-\frac{5!}{2 x^{6}} \\
& f(x)=\sum_{n=0}^{\infty} \frac{(-1)(n+2)!}{(2) 5^{n+3} n!}(x-5)^{n} \operatorname{lin}_{(n+2)!}^{0} \sin ^{n e}((+3)(n+1) n!,
\end{aligned}
$$

$$
\begin{aligned}
& \text { DO NOT WRITE IN THIS TABLE. }
\end{aligned}
$$

SCRATCH PAPER
DO NOT DETACH THIS PAGE

