1. (10 pts.) Find the equation of the plane which contains the point $(2,1,-1)$ and is perpendicular to the planes $3 x+y-z=6$ and $2 x+2 y+z=4$.
2. (12 pts.)
(a) Sketch the domain of $f(x, y)=\sqrt{1-x^{2}}+\sqrt{4-y^{2}}$.
(b) What is the range of f ? Support your answer!
3. (10 pts.) Does $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+x y+y^{2}}$ exist? Why or why not?
4. (10 pts.) For what value(s) of the constant a, if any, does $u(x, y)=e^{2 x} \cos (a y)$ satisfy Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$?
5. (10 pts.) Find the equation of the plane tangent to the surface $x^{2}+x y-y z^{3}+z=6$ at the point $(2,1,1)$.
6. (12 pts.)
(a) Define: $f(x, y)$ is differentiable at a point (a, b).
(b) Use the definition to prove that $f(x, y)=x y$ is differentiable at every point (a, b).
7. (10 pts.) Find parametric equations of the line tangent to the curve $x=t^{2}-1, y=2 t$, $z=t^{2}+1$ at the point $(3,-4,5)$.
8. (12 pts.) For $f(x, y)=x^{2}+3 x y-y^{2}$,
(a) What is the directional derivative of f at $(1,2)$ in the direction from $(1,2)$ to $(4,6)$?
(b) For what unit vector \vec{u} is the direction derivative $D_{\vec{u}} f(1,2)$ largest?
9. (14 pts.) Suppose that $z=f(x, y)$ where $x=2 u+3 v$ and $y=3 u-2 v$, and that f has continuous second partials.
(a) Find $\frac{\partial z}{\partial u}$ in terms of the partial derivatives of f (in other words, in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$).
(b) Find $\frac{\partial^{2} z}{\partial u^{2}}$ in terms of the first and/or second partial derivatives of f.
