An unsupported answer is a wrong answer!

- 1. (10 pts.) Find the equation of the plane which contains the point (2, 1, -1) and is perpendicular to the planes 3x + y z = 6 and 2x + 2y + z = 4.
- 2. (12 pts.)
 - (a) Sketch the domain of $f(x, y) = \sqrt{1 x^2} + \sqrt{4 y^2}$.
 - (b) What is the range of f? Support your answer!
- 3. (10 pts.) Does $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + xy + y^2}$ exist? Why or why not?
- 4. (10 pts.) For what value(s) of the constant *a*, if any, does $u(x, y) = e^{2x} \cos(ay)$ satisfy Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$?
- 5. (10 pts.) Find the equation of the plane tangent to the surface $x^2 + xy yz^3 + z = 6$ at the point (2, 1, 1).
- 6. (12 pts.)
 - (a) Define: f(x, y) is differentiable at a point (a, b).
 - (b) Use the definition to prove that f(x, y) = xy is differentiable at every point (a, b).
- 7. (10 pts.) Find parametric equations of the line tangent to the curve $x = t^2 1$, y = 2t, $z = t^2 + 1$ at the point (3, -4, 5).
- 8. (12 pts.) For $f(x, y) = x^2 + 3xy y^2$,
 - (a) What is the directional derivative of f at (1, 2) in the direction from (1, 2) to (4, 6)?
 - (b) For what unit vector \vec{u} is the direction derivative $D_{\vec{u}}f(1,2)$ largest?
- 9. (14 pts.) Suppose that z = f(x, y) where x = 2u + 3v and y = 3u 2v, and that f has continuous second partials.
 - (a) Find $\frac{\partial z}{\partial u}$ in terms of the partial derivatives of f (in other words, in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$).
 - (b) Find $\frac{\partial^2 z}{\partial u^2}$ in terms of the first and/or second partial derivatives of f.