МАТН 253.504-506
Exam 2, version A
An unsupported answer
10/27/99
Notice that the only problems in which you are asked to evaluate an integral are \#1 and \#'7.

1. (15 pts .) Find \bar{y} of the center of mass of the region $1 \leq x^{2}+y^{2} \leq 9$, $y \geq 0$, if the density is constant.
2. (15 pts.) Use Lagrange multipliers to determine the maximum and minimum values of $x+4 y$ on the ellipse $x^{2}+2 y^{2}=1$, and give the points where these occur.
3. (10 pts.) Convert $\int_{0}^{4} \int_{0}^{x} \sqrt{x^{2}+y^{2}} d y d x$ to an integral in polar coordinates, but don't evaluate it.
4. (15 pts.) Reverse the order of integration to write $\int_{0}^{3} \int_{(x-1)^{2}}^{x+1} f(x, y) d y d x$ as the sum of 1 or more integrals in the order $d x d y$.
5. (15 pts.) Suppose that E is the region in space bounded above by the sphere $(x-2)^{2}+(y+1)^{2}+z^{2}=25$ and below by the plane $z=3$. Set up, but do not evaluate $\iiint_{E} x z d V$, in the order $d z d y d x$.
6. (15 pts.) Determine the maximum and minimum of $f(x, y)=x y+3 x$ on the closed region bounded above by $y=9-x^{2}$ and below by the x axis, and give the points where they occur.
7. (15 pts.) Find the area of the part of the surface $z=x+y^{2}$ which lies above the triangle in the x, y plane with vertices $(0,0),(0,2)$, and $(2,2)$. (Hint: if you run into a hard integral, you've missed something.)
