MATH 253.504–506 Exam 3, version A 12/1/99

This test has 2 pages and 8 problems!

Conversion from spherical to cartesian coordinates:

 $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$ $dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$

- 1. (15 pts.) Evaluate the line integral $\int_{\mathcal{C}} y \, ds$, where \mathcal{C} is the line segment starting at (0, 1, 1) and ending at (2, 2, 3).
- 2. (10 pts.) Determine the equation of the plane tangent to the surface $\vec{r}(u, v) = \langle u^2 + v, u^2 v, uv \rangle$ at the point (5, 3, -2).
- 3. (15 pts.) For the following, determine if they are vector quantities, scalar quantities, or undefined. Here f is a scalar function and \vec{F} is a vector field.
 - (a) $\nabla(\operatorname{div}(\vec{F}))$
 - (b) $\operatorname{curl}(\nabla f)$
 - (c) $\operatorname{curl}(\vec{F}) + \operatorname{div}(\vec{F})$
 - (d) $\operatorname{div}(\nabla f)$
 - (e) $\operatorname{curl}(\operatorname{div}(\vec{F}))$
- 4. (10 pts.) Write a parameterization for the part of the sphere $x^2 + y^2 + z^2 = 4$ which lies outside of the cylinder $x^2 + y^2 = 1$. Be sure to specify the parameter domain.
- 5. (15 pts.) Find \overline{z} of the center of mass of the region above the cone $\phi = \phi_0$ but inside the sphere $\rho = \rho_0$, assuming that density is constant.
- 6. (15 pts.) Let \mathcal{R} be the region in the x, y plane bounded by $xy = 1, xy = 2, xy^2 = 1$ and $xy^2 = 3$. Write $\iint_{\mathcal{R}} x \, dA$ as an iterated integral in the variables u and v, where u = xy and $v = xy^2$.

7. (15 pts.) Use Green's theorem to evaluate $\oint_{\mathcal{C}} (x^3 - y^3) dx + (x^3 + y^3) dy$, where \mathcal{C} is the pictured curve, consisting of two circular arcs and two line segments.

8. (5 pts.) If \vec{F} is the vector field shown, can \vec{F} be conservative? Why or why not?

Figure for problem 8.