This test has 2 pages and 8 problems!

Conversion from spherical to cartesian coordinates:

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi \\
d V & =\rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

1. (15 pts.) Evaluate the line integral $\int_{\mathcal{C}} y d s$, where \mathcal{C} is the line segment starting at $(0,1,1)$ and ending at $(2,2,3)$.
2. (10 pts.) Determine the equation of the plane tangent to the surface $\vec{r}(u, v)=\left\langle u^{2}+v, u^{2}-v, u v\right\rangle$ at the point $(5,3,-2)$.
3. (15 pts.) For the following, determine if they are vector quantities, scalar quantities, or undefined. Here f is a scalar function and \vec{F} is a vector field.
(a) $\nabla(\operatorname{div}(\vec{F}))$
(b) $\operatorname{curl}(\nabla f)$
(c) $\operatorname{curl}(\vec{F})+\operatorname{div}(\vec{F})$
(d) $\operatorname{div}(\nabla f)$
(e) $\operatorname{curl}(\operatorname{div}(\vec{F}))$
4. (10 pts.) Write a parameterization for the part of the sphere $x^{2}+y^{2}+z^{2}=4$ which lies outside of the cylinder $x^{2}+y^{2}=1$. Be sure to specifiy the parameter domain.
5. (15 pts.) Find \bar{z} of the center of mass of the region above the cone $\phi=\phi_{0}$ but inside the sphere $\rho=\rho_{0}$, assuming that density is constant.
6. (15 pts.) Let \mathcal{R} be the region in the x, y plane bounded by $x y=1, x y=2, x y^{2}=1$ and $x y^{2}=3$. Write $\iint_{\mathcal{R}} x d A$ as an iterated integral in the variables u and v, where $u=x y$ and $v=x y^{2}$.
7. (15 pts.) Use Green's theorem to evaluate $\oint_{\mathcal{C}}\left(x^{3}-y^{3}\right) d x+\left(x^{3}+y^{3}\right) d y$, where \mathcal{C} is the pictured curve, consisting of two circular arcs and two line segments.

Figure for problem 7.
8. (5 pts.) If \vec{F} is the vector field shown, can \vec{F} be conservative? Why or why not?

Figure for problem 8.

