This test has 2 pages, 13 problems, and 175 points.

Conversion from spherical to Cartesian coordinates:

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi \\
d V & =\rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

1. (10 pts.) Find the equation of the plane tangent to the surface $x y^{2} z^{3}=2$ at the point $(2,1,1)$.
2. (10 pts.) Evaluate the line integral $\int_{\mathcal{C}} y d x-x d y$ on the semicircle $x^{2}+y^{2}=4, y \geq 0$, from the point $(2,0)$ to $(-2,0)$.
3. (15 pts.) Reverse the order of integration to write $\int_{1}^{3} \int_{6 / x}^{-2 x+8} \phi(x, y) d y d x$ as an iterated integral in the order $d x d y$. (You won't be evaluating an integral in this problem.)
4. (10 pts.) Write a parameterization for the part of the cylinder $x^{2}+z^{2}=4$, which lies between the planes $y=-1$ and $x+2 y+z=8$. Be sure to specify the parameter domain.
5. (15 pts.) Using the divergence theorem, compute $\iint_{\mathcal{S}}(\vec{F} \cdot \vec{n}) d S$, where \mathcal{S} is the surface of the cylinder $x^{2}+y^{2} \leq 1,0 \leq z \leq 2, \vec{n}$ is the outward pointing unit normal, and $\vec{F}=\left\langle x y^{2}, x z, x^{2} z\right\rangle$.
6. (20 pts.) Suppose that \mathcal{E} is the region in space bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the sphere $x^{2}+y^{2}+z^{2}=4$. Write (but don't evaluate) $\iiint_{\mathcal{E}} x^{2} d V$ in
(a) spherical coordinates.
(b) cylindrical coordinates.
7. (15 pts.) Set up (but do not evaluate) an iterated integral, in the order $d z d y d x$, for $\iiint_{\mathcal{E}} z d V$, where \mathcal{E} is the region in space bounded below by $z=x^{2}+y^{2}$ and above by the plane $2 x+4 y-z=-4$.
8. (15 pts.) Set up (but do not evaluate) an iterated integral in u and v to find the flux of $\vec{F}=\langle 2 x,-z, y\rangle$ across the surface $\vec{r}(u, v)=\left\langle u^{2}, u v, v^{2}\right\rangle, 1 \leq u \leq 2,1 \leq v \leq 3$, using the upward pointing unit normal.
9. Suppose that $z=f(x, y)$, where $x=5 u+2 v, y=3 u+v$, and that f has continuous second partials.
(a) (5 pts.) Find $\frac{\partial z}{\partial u}$ in terms of u, v, and the partial derivatives of f.
(b) (10 pts.) Find $\frac{\partial^{2} z}{\partial u \partial v}$ in terms of u, v, and the partial derivatives of f.
10. (15 pts.) Find $\oint_{\mathcal{C}} x^{3} d x+\left(x^{3}+y^{2}\right) d y$, where \mathcal{C} consists of the line segment from $(-1,0)$ to $(1,0)$ followed by the parabolic arc $y=1-x^{2}$ from $(1,0)$ to $(-1,0)$ (see diagram).

Figure for problem 10.
11. (10 pts.) Determine the equation of the plane which contains the point $(1,-1,2)$ and the line $x=-1+2 t, y=1+t, z=1+3 t$.
12. (10 pts.) Describe the domain and range of the function $f(x, y)=\sqrt{16-4 x^{2}}-\sqrt{9-y^{2}}$.
13. (15 pts.) Determine the maximum and minimum values of $f(x, y)=x^{2}+2 y^{2}-x$ on the disk $x^{2}+y^{2} \leq 1$, giving the points where they occur.

