1. [12] A subgroup H of a group G is **characteristic** if $\varphi(H) = H$ for any automorphism φ of G. Show that a characteristic subgroup is normal. Suppose that $G = HK$, where H and K are characteristic subgroups of G with $H \cap K = \{e\}$. Show that $\text{Aut}(G) \simeq \text{Aut}(H) \times \text{Aut}(K)$. (Here, $\text{Aut}(L)$ is the group of automorphisms of L.)

2. [12] Show that any group of order $2014 = 2 \cdot 19 \cdot 53$ has a normal cyclic subgroup of index 2. Use this to classify all groups of order 2014.

3. [10] Prove that a finite integral domain is a field. Prove that every prime ideal in a finite commutative ring is maximal.

4. [14] Let R be a commutative ring. Observe that for any two R-modules M, N, the collection $\text{Hom}(M, N)$ of R-module homomorphisms $\varphi : M \to N$ is naturally an R-module. Suppose that

$$0 \rightarrow L \xrightarrow{e} M \xrightarrow{f} N \xrightarrow{g} P \rightarrow 0$$

is an exact sequence of R-modules (so that g is a surjection whose kernel is equal to the image $f(M)$ of M under f, and e is an injection whose image is the kernel of f). Let A be an R-module. Prove that the induced sequence

$$0 \rightarrow \text{Hom}(A, L) \xrightarrow{e*} \text{Hom}(A, M) \xrightarrow{f*} \text{Hom}(A, N)$$

is exact in that $e*$ is injective and its image is the kernel of the map $f*$. Also prove that the induced sequence

$$\text{Hom}(M, A) \xleftarrow{f^*} \text{Hom}(N, A) \xleftarrow{g^*} \text{Hom}(P, A) \xleftarrow{0}$$

is exact in that g^* is injective and its image is the kernel of the map f^*.

5. [10] Let M be an invertible $n \times n$ matrix with real number entries and positive determinant. Show that M can be written as RK where R is in $SO(n)$ (R is orthogonal with determinant 1) and K is an upper triangular matrix with positive entries on the diagonal. Hint: Orthogonal matrices have orthonormal column vectors.
6. [16] Consider a finite field F with $q = p^n$ elements, where p is a prime number and n is a positive integer.
 (a) Explain why every element of F is a root of the polynomial $x^{p^n} - x$.
 (b) Show that if r divides $p^n - 1$ then all the roots of the polynomial $x^r - 1$ lie in F.
 (c) Show that the polynomial $x^4 + 1$ is reducible over any finite field. (Hint: It is enough to show it over the prime fields with p elements. Consider the cases $p = 2$ and p odd separately and observe that for p odd, $p^2 - 1$ is congruent to 0 mod 8, and $x^8 - 1 = (x^4 - 1)(x^4 + 1)$.)

7. [14] Let $f(x) = x^4 - 4x^2 + 2 \in \mathbb{Q}[x]$, let E be its splitting field contained in \mathbb{C}, and let G be the Galois group of E over \mathbb{Q}. Without simply citing a theorem about Galois groups of quartic polynomials, prove that G is isomorphic to $\mathbb{Z}/4\mathbb{Z}$. Find a generator for G and determine how it acts on the roots of $f(x)$. It may help to first identify an intermediate subfield F, where $\mathbb{Q} \subseteq F \subseteq E$.

8. [12] Let p and q be prime numbers.
 (a) Define a surjective map $\phi : \mathbb{Q}(\sqrt{p}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{q}) \to \mathbb{Q}(\sqrt{p}, \sqrt{q})$ that is both \mathbb{Q}-linear and a ring homomorphism.
 (b) If p and q are distinct, show that ϕ is an isomorphism.
 (c) If $p = q$, what is a \mathbb{Q}-basis for the kernel of ϕ?