Applied/Numerical Analysis Qualifying Exam

January 8, 2012

Cover Sheet – Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

M - *		
Namo		

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part January 8, 2012

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let \mathcal{D} be the set of compactly supported functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Consider a function $f \in C^{(1)}(\mathbb{R})$ such that both f and f' are in $L^1(\mathbb{R})$, and $\int_{\mathbb{R}} f(x)dx = 1$. Define the sequence of functions $\{T_n(x) := n^2 f'(nx) : n = 1, 2, ...\}$. Show that, in the sense of distributions — i.e., in \mathcal{D}' —, T_n converges to δ' .

Problem 2. Let $M: C[0,1] \to C[0,1]$ be defined by $M(u) := \int_0^1 (2+st+u(s)^2)^{-1} ds$. Let $\|\cdot\| := \|\cdot\|_{C[0,1]}$. Let $B_r := \{u \in C[0,1] \mid \|u\| \le r\}$.

- (a) Show that $M: B_1 \to B_{1/2} \subset B_1$.
- (b) Show that M is Lipschitz continuous on B_1 , with Lipschitz constant $0 < \alpha < 1$ i.e., $||M[u] M[v]|| \le \alpha ||u v||$.
- (c) Show that M has a fixed point in B_1 . State the theorem you are using to show that the fixed point exists.

Problem 3. Let $Lu = -\frac{d^2u}{dx^2}$, $-\pi \le x \le \pi$, with the domain of L given by

$$D_L := \{ u \in L^2[-\pi, \pi] : u'' \in L^2[\pi, \pi], \ u(-\pi) = -u(\pi), \ u'(-\pi) = -u'(\pi) \}.$$

- (a) Show that L is self adjoint on D(L).
- (b) Find the Green's function G(x,y) for the problem Lu = f, $u \in D_L$.
- (c) Show that $Ku := \int_{-\pi}^{\pi} G(\cdot, y) u(y) dy$ is a compact self-adjoint operator.
- (d) Without actually finding them, show that the eigenfunctions of L form a complete, orthogonal set for $L^2[-\pi,\pi]$. (Hint: Relate the eigenfunctions of L to those of K. Use compactness.)

Problem 4. Let T be a (possibly unbounded) linear operator on a Hilbert space \mathcal{H} , defined on the domain D_T .

- (a) Define these: the resolvent set of T, $\rho(T)$; the discrete spectrum, $\sigma_d(T)$; the continuous spectrum, $\sigma_c(T)$; and the residual spectrum, $\sigma_r(T)$.
- (b) Assume T is bounded. Show that the set $\{\lambda \in \mathbb{C} : |\lambda| > ||T||\} \subseteq \rho(T)$. (Hint: Use a Neumann series expansion.)
- (c) Let $\mathcal{H} = \ell^2$, with the usual inner product. Define T to be the shift operator

$$T(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots).$$

Show that every $|\lambda| > 1$ is in $\rho(T)$, that $\lambda = 1$ is in $\sigma_c(T)$, and that $\lambda = 0$ is in $\sigma_r(T)$.

Applied/Numerical Analysis Qualifying Exam

January 8, 2012

Cover Sheet - Numerical Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

3.7		
Name		
Name		

Combined Applied Analysis/Numerical Analysis Qualifier Numerical analysis part January 8, 2012

Problem 1:

Let $\Omega=(0,1)\times(0,1),\,f\in C^0(\overline{\Omega})$ and $q\in\mathbb{R}$ with $q\geq 0$. Consider the boundary value problem

$$-\Delta u + qu = f$$
 in Ω ; $u = 0$ on $\partial \Omega$.

We are interested in approximating the quantity $\alpha := \int_{\partial\Omega} \mathbf{n} \cdot \nabla u$ where \mathbf{n} is the outward unit normal of Ω .

1. The boundary problem has a weak formulation: Find $u \in \mathbb{V}$ such that

$$\forall v \in \mathbb{V}: \quad a(u,v) = L(v).$$

Identify \mathbb{V} , a(u,v) and L(v). Show that there exists a unique solution $u \in \mathbb{V}$ satisfying the above weak formulation.

2. Let $\{\mathcal{T}_h\}_{0 < h < 1}$ be a sequence of conforming shape-regular subdivisions of Ω such that $\operatorname{diam}(T) \leq h$, for all $T \in \mathcal{T}_h$ and define

$$\mathbb{V}_h := \left\{ v \in C^0(\overline{\Omega}) \cap \mathbb{V} \mid \forall T \in \mathcal{T}_h, \quad v|_T \text{ is linear} \right\}.$$

Write the weak formulation satisfied by the finite element approximation $u_h \in \mathbb{V}_h$ of u. Prove that the function u_h exists and is unique.

3. Assume from now that $u \in H^2(\Omega)$. Derive the error estimate

$$||u - u_h||_{H^1(\Omega)} \le c_1 h ||u||_{H^2(\Omega)},$$

where c_1 is a constant independent of h and u.

Hint: you can use without proof the fact that there exists a constant C independent of h such that for any $v \in H^2(\Omega)$

$$\inf_{v_h \in \mathbb{V}_h} \|v - v_h\|_{\mathbb{V}} \le Ch\|v\|_{H^2(\Omega)}.$$

4. Show that that for the constant function $w(\mathbf{x}) = 1$ we have

$$\alpha = a(u, w) - L(w).$$

Now let $\alpha_h := a(u_h, w) - L(w)$. Using the previous parts, show that when q > 0 there holds

$$|\alpha - \alpha_h| \le c_2 h^2 ||u||_{H^2(\Omega)},$$

where c_2 is a constant independent of h and u. What can you say about $|\alpha - \alpha_h|$ when q = 0?

Problem 2:

Let K be a polyhedron in \mathbb{R}^d , $d \geq 1$. Let h = diam(K) and define

$$\hat{K} = {\hat{\mathbf{x}} = \mathbf{x}/\text{diam}(K), \quad \mathbf{x} \in K}.$$

Show that there exists a constant c solely depending on \hat{K} such that for any $v \in H^1(K)$,

$$||v||_{L^2(\partial K)} \le c \left(h^{-1/2}||v||_{L^2(K)} + h^{1/2}||\nabla v||_{L^2(K)}\right).$$

Problem 3:

Let $u_0:(0,1)\to\mathbb{R}$ be a given smooth initial condition and T>0 be a given final time. Let $u:[0,T]\times\Omega\to\mathbb{R}$ be a smooth function satisfying u(t,0)=u(t,1)=0 for any $t\in[0,T]$ and

$$\forall v \in C_c^{\infty}([0,T) \times (0,1)) :$$

(4.1)
$$-\int_0^T \int_0^1 u(t,x) \ v_t(t,x) \ dx \ dt - \int_0^1 u_0(x)v(0,x) \ dx$$

$$+\int_0^T \int_0^1 u_x(t,x) \ v_x(t,x) \ dx \ dt + \int_0^T \int_0^1 u(t,x) \ v(t,x) \ dx \ dt = 0.$$

Here $C_c^{\infty}([0,T)\times(0,1))$ is the space of functions belonging to $C^{\infty}([0,T]\times[0,1])$ and compactly supported in $[0,T)\times(0,1)$.

- 1. Derive the corresponding strong formulation.
- 2. Let N > 0 be an integer, h = 1/N and $x_n = n$ h, n = 0, ..., N. Derive the semi-discrete approximation of (4.1) using continuous piecewise linear finite elements.
- 3. In addition, let M > 0 be an integer, $\tau = T/M$ and $t_m = m\tau$ for m = 0, ..., M. Write the fully discrete schemes corresponding to backward Euler and forward Euler methods, respectively.
- 4. Prove that the backward (implicit) Euler scheme is unconditionally stable while the forward (explicit) Euler method is stable provided $\tau \leq ch^2$, where c is a constant independent of h and τ .