1. Give the statements of the following:
 (a) Runge’s theorem;
 (b) the Schwarz lemma.

2. Find the Laurent expansion for the function $z^{-1}(z + 1)^{-1}$ centered at $a = 1$ in $\{1 < |z - 1| < 2\}$.

3. Let f be a meromorphic function in \mathbb{C}. Suppose that f is doubly periodic, i.e. that for some non-zero numbers $a, b \in \mathbb{C}$,

 \[f(z) = f(z + a) \quad \text{and} \quad f(z) = f(z + b) \]

 for any $z \in \mathbb{C}$. Consider the parallelogram P with sides $(0, a)$ and $(0, b)$. Assuming that f does not have any zeros or poles on the sides of P, prove that the number of zeros of f in P is equal to the number of poles of f in P.

4. Apply the Residue Theorem to evaluate the integral

 \[\int_{-\infty}^{\infty} \frac{\cos x \, dx}{(x^2 + 1)(x^2 + 4)}. \]

5. Let $u(z)$ be a real continuous function on the unit circle. Write an integral formula for the analytic function $f(z)$ in the unit disk such that

 \[\lim_{z \to \xi} \Re f(z) = u(\xi) \]

 for every ξ on the unit circle.

6. Let f be an analytic function in the unit disk \mathbb{D}. Suppose that $|f(z)| \leq 1$ in \mathbb{D}. Prove that then

 \[\frac{|f(0)| - |z|}{1 - |f(0)||z|} \leq |f(z)| \leq \frac{|f(0)| + |z|}{1 + |f(0)||z|}. \]

7. Show that the equation

 \[e^z - z = \lambda, \]

 where $\lambda > 1$, has exactly one root in the left half-plane $\{\Re z < 0\}$.

8. Let f be a function, analytic and bounded in the strip $\{|\Im z| < \pi/2\}$. Suppose that $f(\ln n) = 0$ for all $n \in \mathbb{N}$. Prove that f is identically zero.

9. Let $f(z)$ be a meromorphic function in \mathbb{C}. Show that f can be expressed as $f(z) = g(z)/h(z)$ where g and h are entire.

10. Describe the set of all harmonic functions $u(x, y)$ in \mathbb{C} such that the product $(x^2 - y^2)u(x, y)$ is harmonic in \mathbb{C}.