1. Give the statements of the following results:
 (a) Montel’s theorem;
 (b) Harnack’s lemma;
 (c) Mittag-Leffler’s theorem.

2. Let \(f(z) \) be analytic in \(\Omega = \{ |z| > 1 \} \). Suppose that \(f \) satisfies \(|f(z)| < |z|^n \) for all \(z \in \Omega \) and for some \(n > 0 \). Prove that either \(f \) has finitely many zeros in \(\{ |z| > 2 \} \) or \(f \) is identically zero.

3. Let \(f \) be an entire function that is not a polynomial. Denote
 \[
 M(r) = \max_{|z|=r} |f(z)|.
 \]
 Show that
 \[
 \lim_{r \to \infty} \frac{M(r/2)}{M(r)} = 0.
 \]

4. Let \(f \) and \(g \) be analytic functions in the same connected complex domain \(\Omega \). Suppose that \(|f| = \Re g \) in \(\Omega \). Show that \(f \) and \(g \) are constants.

5. Consider the line in the \(z \) plane defined by the following equation:
 \[
 3\Re(z) + 4\Im(z) = 5.
 \]
 Under the inversion that sends \(z \) to \(1/z \), this line transforms into a circle. Find the center and the radius of that circle.

6. Consider a rational function \(f(z) = q(z)/p(z) \), where \(p \) is a polynomial of degree \(n \) and \(q \) is a polynomial of degree \(n - 2 \) or less. If \(z_1, z_2, \ldots, z_n \) are distinct roots of \(p \), prove that the residues of \(f \) satisfy
 \[
 \sum_{k=1}^{n} \text{Res}(f, z_k) = 0.
 \]

7. Let \(f \) be an entire function. Prove that all the coefficients in the power series expansion of \(f \) at the origin are real if and only if \(f \) is real on the real line.

8. Find a biholomorphic map between the unit disk and the parabolic region in the \(z \) plane defined by the property that \(\Im(z) > (\Re(z))^2 \).

9. Use harmonic functions to prove the following statement: For any continuous function \(f \) on the unit circle \(\mathbb{T} = \{ |z| = 1 \} \) there exists a sequence of polynomials \(p_n(z, \bar{z}) \) of \(z \) and \(\bar{z} \) that converges to \(f \) uniformly on \(\mathbb{T} \) (The Weierstrass Approximation Theorem for the unit circle).

10. Show that there is no entire function of finite order, except the zero function, that has roots at all points \(z \) such that \(\exp(\exp(z)) = 1 \).