Notation. Let \(\mathbb{R}^n \) denote real \(n \)-space. Employ the summation convention: any repeated index appearing as a subscript and superscript is summed over.

Show your work.

1.) Let \(C \) be a subset of a topological space \(X \).
 (a) Prove that if \(C \) is connected, then the closure of \(C \) is connected.
 (b) Prove or give a counter-example to the following statement: if \(C \) is connected, then the interior of \(C \) is connected.

2.) Prove that a countable product of separable spaces is separable.

3.) (a) Is the set of rational numbers \(\mathbb{Q} \) (as a subspace of \(\mathbb{R} \)) locally compact? Prove your answer.
 (b) Prove that if a topological space \(X \) is locally compact, Hausdorff, and second countable, then it is metrizable.

4.) Let \(f : X \to Y \) be a continuous map between topological spaces \(X \) and \(Y \).
 (a) Define what it means for \(f \) to be a quotient (an identification) map.
 (b) Prove that if the map \(f : X \to Y \) is open and onto, then \(f \) is a quotient map.
 (c) Let \(C \) be the union of the \(x \)-axis and the \(y \)-axis of \(\mathbb{R}^2 \) and define \(g : \mathbb{R}^2 \to C \) as follows:
 \[
 g(x, y) = \begin{cases}
 (x, 0) & \text{if } x \neq 0 \\
 (0, y) & \text{if } x = 0
 \end{cases}
 \]
 Does the quotient topology on \(C \) induced by \(g \) coincide with the subspace topology on \(C \) induced from the standard topology of \(\mathbb{R}^2 \)? Prove your answer.

5.) (a) Give the definition of a paracompact space.
 (b) Using the definition of paracompactness only, prove that \(\mathbb{R}^n \) (with the standard topology) is paracompact.
 (c) Give an example to show that if \(X \) is paracompact, it does not follow that for every open covering of \(\mathcal{A} \) of \(X \) there is locally finite subcollection of \(\mathcal{A} \) that covers \(X \).

6.) Let \(\{K_\alpha\}_{\alpha \in A} \) be a collection of compact subsets of a Hausdorff space \(X \) which is closed with respect to finite intersections. Let \(K = \bigcap_{\alpha \in A} K_\alpha. \)
 (a) Suppose that \(W \) is an open subset of \(X \) such that \(K \subset W \). Prove that \(K_\alpha \subset W \) for some \(\alpha \in A \).
(b) Prove that if K_α is connected for each $\alpha \in A$, then K is connected.

7.) (a) State the definition of a smooth n-dimensional manifold.
(b) Define $F : \mathbb{R}^3 \to \mathbb{R}^1$ by $F(x, y, z) = x \cos(z) + y \sin(z)$. Prove that the level set $F^{-1}(0)$ is a smooth 2-dimensional manifold.

8.) Let X_1, \ldots, X_m be linearly independent vector fields on \mathbb{R}^n, $m \leq n$. Fix the index ranges

\begin{align*}
1 & \leq a, b \leq m \\
1 & \leq i, j \leq n \\
m + 1 & \leq s, t \leq n.
\end{align*}

Prove the following.
(a) For every $p \in \mathbb{R}^n$ there exists an open set $U \subset \mathbb{R}^n$ containing p and linearly independent 1-forms η^1, \ldots, η^n on U with the property that $\eta^i(X_a) = \delta^i_a$. Here δ^i_a is the Kronecker delta.
(b) Prove that $[X_a, X_b] \subset \text{span}_{\mathbb{R}} \{X_1, \ldots, X_m\}$ if and only if there exist 1-forms α^s_t on U such that $d\eta^s = \alpha^s_t \wedge \eta^t$, for all $m + 1 \leq s \leq n$.

9.) Let $Z = \mathbb{R}^{n+1} \setminus \{0\}$. Define an equivalence relation \sim on U by

$x \sim y$ if and only if there exists $\lambda \neq 0$ such that $y = \lambda x$.

Recall that projective n-space is the manifold $\mathbb{P}^n = Z/\sim$. Given $x = (x^0, \ldots, x^n) \in Z$, let $[x] = [x^0 : \ldots : x^n] \in \mathbb{P}^n$ denote the corresponding equivalence class. Fix $p = [1 : 0] \in \mathbb{P}^1$ and $q = [1 : 0 : 0 : 0] \in \mathbb{P}^3$.
(a) Describe a coordinate chart (U, φ) about p, and coordinate chart (V, ψ) about q.
(b) Let $\nu : \mathbb{P}^1 \to \mathbb{P}^3$ be the Veronese map $\nu([s : t]) = [s^3 : s^2 t : st^2 : t^3]$. Give the local coordinate expression of ν with respect to the coordinates (U, φ) and (V, ψ).
(c) Express the push-forward $\nu_* : T_p \mathbb{P}^1 \to T_q \mathbb{P}^3$ in terms of the local coordinates.
(d) Express the pull-back $\nu^* : T_q \mathbb{P}^3 \to T_p \mathbb{P}^1$ in terms of the local coordinates.

10.) Consider a unit speed curve $C : t \mapsto (\alpha(t), 0, \beta(t))$ in \mathbb{R}^3 with $\alpha(t) > 0$. Let S be the surface of revolution obtained by rotating C about the z-axis. The $(\alpha(t), \beta(t))$ for which S is of constant Gauss curvature $K = -1$ are characterized by an ordinary differential equation. Identify that equation.