(1) Let Y be a set and consider two collections of functions $\mathcal{F} = \{f_\alpha : X_\alpha \to Y \mid \alpha \in \Lambda\}$ and $\mathcal{G} = \{g_\alpha : Y \to X_\alpha \mid \alpha \in \Lambda\}$, where the X_α’s are topological spaces.

(a) Show that Y has a unique finest topology Y_F so that $f_\alpha \in \mathcal{F}$ is continuous for all $\alpha \in \Lambda$.

(b) Show that Y has a unique coarsest topology Y_G so that $g_\alpha \in \mathcal{G}$ is continuous for all $\alpha \in \Lambda$.

(2) Given $\alpha \in \mathbb{R}$ denote $L_\alpha = \{(r, \alpha r) \mid r \in \mathbb{Q}\} \subset \mathbb{R}^2$, where \mathbb{Q} denotes the rational numbers. Define $S_{irr} = \bigcup_{\alpha \in \mathbb{R} \setminus \mathbb{Q}} L_\alpha$ and give $X = \mathbb{R}^2 - S_{irr} \subset \mathbb{R}^2$ the subspace topology.

(a) Show that X is connected and locally path-connected.

(b) Is X paracompact? Explain.

(c) Is X locally compact? Explain.

(3) Let $S^n = \{x \in \mathbb{R}^{n+1} \mid \|x\| = 1\}$ and $B^{n+1} = \{x \in \mathbb{R}^{n+1} \mid \|x\| \leq 1\}$ denote the unit sphere and unit closed ball in \mathbb{R}^n, respectively. Show that one can define an equivalence relation \sim on $X = S^n \times [0, \infty)$ so that the quotient space X/\sim is homeomorphic to the ball B^{n+1}.

(4) Suppose that X is a T_1 topological space which is also normal, and that $X = U \cup V$, where U and V are open in X. Show that one can find open subsets U_1, V_1 satisfying

$$\overline{U_1} \subset U, \quad \overline{V_1} \subset V \quad \text{and} \quad X = U_1 \cup V_1.$$

(5) Let $\mathbb{Z}/n\mathbb{Z}$ denote the set of congruence classes of integers mod n, endowed with the discrete topology, and give the cartesian product $X = \prod_{n \geq 2} \mathbb{Z}/n\mathbb{Z}$ the product topology. Denote by $[x]_n$ the congruence class of $x \in \mathbb{Z}$ modulo n.

(a) Fix $k \in \mathbb{Z}$ and let $F_k \subset X$ denote the set of elements $x = ([x_n]_n)_{n \geq 2} \in X$ such that $[x_n]_n$ is a multiple of $[k]_n$ for all $n > k$. Show that F_k is a closed subset of X.

(b) Let $B \subset X$ be a non-empty closed subset such that $B \cap F_2 = \emptyset$. Show that there is a continuous function $f : X \to [0, 1]$ such that $f(x) = 0$ if $x \in B$ and $f(x) = 1$ if $x \in F_2$.

(6) Let $X \subset \mathbb{C}^n$ denote the subspace given by the equations
\[z_1^2 + z_2^2 + \cdots + z_n^2 = 0 \quad \text{and} \quad |z_1|^2 + |z_2|^2 + \cdots + |z_n|^2 = 2, \]
where $|z|$ denotes the norm of a complex number. Let $Gr_2(\mathbb{R}^n)$ denote the Grassman manifold of 2-planes in \mathbb{R}^n.
(a) Show that X is a smooth, compact submanifold of \mathbb{C}^n and determine its dimension.
(b) Write $z = x + \sqrt{-1} y \in \mathbb{C}^n$, where x and $y \in \mathbb{R}^n$ are the real and imaginary parts of z, respectively. Show that the map $\psi: X \to Gr_2(\mathbb{R}^n)$ sending $z \in X$ defined by $\psi(z) = \text{Span}_{\mathbb{R}}(x, y)$ is a smooth, surjective map.
\[\cdot \text{Here, Span}_{\mathbb{R}}(x, y) \text{ denotes the linear span in } \mathbb{R}^n \text{ of the vectors } x \text{ and } y. \]

(7) Let M be a smooth manifold and let α be a smooth section of its cotangent bundle. For $x \in M$, let
\[\alpha_{x}^{\perp} := \{ v \in T_{x}M \mid \alpha(v) = 0 \} \]
and let $\alpha_{x}^{\perp} := \cup_{x \in M} \alpha_{x}^{\perp}$. Show that α_{x}^{\perp} is a sub-vector bundle of the tangent bundle TM if and only if α is a non-vanishing section of the cotangent bundle. You may use the fact that TM is a vector bundle.

(8) Let M be a smooth manifold and let $\alpha \in \Omega^1(M)$ be a non-vanishing section. Consider the following statements:
(a) There exists a function $f \in C^\infty(M)$, such that $\alpha = df$.
(b) Through each $x \in M$ there exists a hypersurface $Z_{x} \subset M$, such that $\alpha_{x}^{\perp} |_{Z_{x}} = T_{Z_{x}}$.
(c) For all $X, Y \in \Gamma(\alpha^{\perp})$, i.e., X, Y are sections of the vector bundle α^{\perp}, $[X, Y] = 0$.
(d) For all $X, Y \in \Gamma(\alpha^{\perp})$, $[X, Y] \in \Gamma(\alpha^{\perp})$.
Determine the implications among them (e.g. (a) implies (y) because ...).

(9) Let \mathbb{R}^3 have coordinates (x, y, z). Which of the following are Riemannian metrics on \mathbb{R}^3:
(a) $g = (x + y)dx \circ dx + (y + z)dy \circ dy + (z + x)dz \circ dz$.
(b) $g = 13dx \circ dx + 2dx \circ dy + 44dy \circ dy + dz \circ dz$.
(c) $g = dx \circ dx + dy \circ dy$.
Here \circ denotes the symmetric tensor product.

(10) Compute the Gauss and mean curvature functions for a sphere of radius 5 in Euclidean three space.