Topology Qualifying Examination
January 2013

Instructions. Answer all questions. Write your name and page number in the upper right corner of each page. Start each problem on a new sheet of paper, and use only one side of each sheet.

Notation. \(\mathbb{N} \) denotes the positive integers. \(\mathbb{R} \) denotes the real numbers. \(\mathbb{R}^n \) denotes Euclidean \(n \)-dimensional space.

1. Let \(X \) be a metric space. Given a cover \(\{U_\alpha\} \) of \(X \) by subsets of \(X \), a \textit{Lebesgue number} for the cover is a number \(\epsilon > 0 \) such that if \(A \subset X \) and \(\text{diam}(A) < \epsilon \), then \(A \) is contained in at least one set \(U_\beta \) of the cover.

 (a) Prove that every open cover of a compact metric space \(X \) has a Lebesgue number.

 (b) Prove that if \(f : X \to Y \) is a continuous map from a compact space \(X \) to a metric space \(Y \), then \(f \) is uniformly continuous.

2. Let \(X \) and \(Y \) be topological spaces. Let \(f : X \to Y \) be a quotient map. Define \textit{quotient map}.

 Show that if \(Y \) is connected and \(f^{-1}(y) \) is connected for all \(y \in Y \), then \(X \) is connected.

3. Define \textit{paracompact space}. Prove that if \(X \) is paracompact, then \(X \) is normal.

4. Let \(X \) and \(Y \) be topological spaces. Let \(f : X \to Y \) be a surjective function satisfying the condition that \(\text{int}(f(A)) \subset f(\text{int}(A)) \) for any subset \(A \subset X \). Show that \(f \) is continuous.

5. For every \(S \subset \mathbb{N} \), let \(X_S = \{0, 1\} \) with the discrete topology, and let \(X = \prod S X_S \) with the product topology. Let \(f_n(S) \) be 0 if \(n \in S \), and 1 if \(n \not\in S \). Prove that the sequence \(\{f_n\} \) in \(X \) does not have a convergent subsequence.

6. Let \(F : \mathbb{R}^3 \to \mathbb{R}^3 \) be given by \(F(x, y, z) = (x^2 - y^3, xy, (z - 1)^4) \). For which points \(p = (x, y, z) \) is \(F \) a diffeomorphism in a neighborhood of \(p \)?

7. Consider the surface \(S = \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + y^2\} \). Compute the tangent space to \(S \) at \(p = (1, 0, 1) \) and determine the geodesic going from \(p \) to \(q = (0, 0, 0) \) as a parameterized curve.

8. Define the cotangent bundle of a differentiable manifold. (Hint: first define the cotangent space at a point.)

9. Describe all smooth surfaces in \(\mathbb{R}^3 \) with coordinates \((x, y, z)\) such that the pullback of the one-form \(\theta := dy - zdx \) is identically zero.
10. Let \(r > 0 \) be a constant and consider the surface \(S = \{(x, y, z) \in \mathbb{R}^3 \mid r = x^2 + y^2\} \). Compute the Gauss and mean curvature functions on \(S \). What is the group of isometries of \(S \)?