INSTRUCTIONS
• There are 8 problems. Work on all of them.
• Prove your assertions.
• Use separate sheet of paper for each problem and write only on one side of
 the paper.
• Write your name on the top right corner of each page.

Problem 1. Show that a bijection \(f : X \rightarrow Y \) is a homeomorphism if and only
if \(f(A) = f(A) \) for every \(A \subset X \).

Problem 2. Prove that the one-point compactification of the half-open interval
\([0, 1)\) is homeomorphic to the closed interval \([0, 1]\).

Problem 3. a) Give the definition of a connected component of a topological
 space.
 b) Let \(X \) be a topological space, and let \(X' \subset X \). Show that the connected
 component of \(x \in X' \) in the subspace \(X' \) is a subset of the connected component
 of \(x \) in \(X \).

Problem 4. Prove that a metric space \(X \) is compact if and only if every continuous
 function \(f : X \rightarrow \mathbb{R} \) is bounded.

Problem 5. Let \(\mathbb{R}^3 \) have coordinates \((x, y, z)\) and the standard Euclidean struc-
 ture. Let \(S \subset \mathbb{R}^3 \) be the surface parametrized locally by \(x = t + s, y = t^2 + 2ts,
 z = t^3 + 3st^2 \), where \(s, t > 0 \). Using any method you please, determine the Gauss
 curvature function \(K(s, t) \).

Problem 6. Let \(M \) be a differentiable manifold, and let \(x \in M \).
 (1) Define (without reference to the tangent space), the cotangent space of \(M
 \) at \(x \), \(T^*_x M \).
 (2) Define (without reference to the cotangent space), the tangent space of \(M
 \) at \(x \), \(T_x M \).
 (3) Show that, with the above definitions, \(T_x M \) and \(T^*_x M \) are dual vector
 spaces.

Problem 7. Consider the following Lie subgroup of \(\text{GL}_3 \mathbb{R} \):
\[
G := \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{R} \right\}
\]
Determine the Lie algebra of \(G \) as a subalgebra of \(\text{gl}_3 \mathbb{R} \).

Problem 8. On \(\mathbb{R}^3 \) with coordinates \((x, y, z)\), let \(\theta = dx + f(z)dy \), for some
function \(f(z) \). State a necessary and sufficient condition on \(f(z) \) such that for each
point of \(\mathbb{R}^3 \) there exists a surface \(S \) whose tangent plane is annihilated by \(\theta \), i.e., if
\(v, w \) is a basis for \(T_p S \), then \(\theta_p(v) = 0 \) and \(\theta_p(w) = 0 \).