Math 142 Help Session Interview Questions

1. Solve the following for $x: \log _{4}(2 x+4)+\log _{4} x=2$
2. Find the value(s) of x where $f(x)$, given below, is not continuous and explain why $f(x)$ is not continuous there by using the definition of continuity, not graphical explanations.

$$
f(x)=\left\{\begin{array}{cl}
\frac{2 x+2}{x-5} & , x \leq 7 \\
x+2 & , x>7
\end{array}\right.
$$

3. Find $\lim _{x \rightarrow \infty} \frac{e^{-2 x}+e^{3 x}}{3 e^{3 x}-e^{-2 x}}$
4. Given the function, $f(x)=\frac{1}{x+1}$, find the derivative, $f^{\prime}(x)$, using the limit definition of derivative.
5. Sketch a graph of a function that satisfies the following conditions:
x-intercept at $x=1$
Horizontal Asymptote: $y=0$
Vertical Asymptote: $x=0$
$f^{\prime}(2)=0, f(2)=1, f(3)=8 / 9$
$f^{\prime}(x)>0$ on $(0,2)$
$f^{\prime}(x)<0$ on $(-\infty, 0)$ and $(2, \infty)$
$f^{\prime \prime}(x)>0$ on $(3, \infty)$
$f^{\prime \prime}(x)<0$ on $(-\infty, 0)$ and $(0,3)$
6. Find $\lim _{x \rightarrow 2} \frac{2 x^{2}-5 x+2}{x^{2}+x-6}$
7. Given $f^{\prime}(x)=a(x-1)^{2}(x+2)(x+5), f(x)$ is defined everywhere and a is a constant function that is always negative, find
(a) the intervals where $f(x)$ is increasing/decreasing.
(b) the value(s) of x where any relative extremum of $f(x)$ occur and specify whether it is a maximum or minimum.
8. The demand equation of a particular product is given to be $p=e^{2 x}$ where x is the number of items demanded and p is the price in dollars. Find the marginal revenue equation.
9. Find the area of the region between the curves $y=x^{3}-6 x^{2}+9 x$ and $y=x^{2}-3 x$ on the interval $[1,6]$. Also, sketch the graph of the two curves and shade the described region.
10. If $\int_{3}^{1} f(x) d x=4$ and $\int_{1}^{3}[2 f(x)-3 g(x)] d x=15$, then evaluate $\int_{1}^{3} g(x) d x$.
11. Given $g(x)=3 \ln x$, find the average rate of change of $g(x)$ on the interval [1,e].
12. A poster is to have a total area of $200 \mathrm{in}^{2}$. The poster will contain a printed area plus 1 inch margins at the bottom and sides and a 2 inch margin at the top. What dimensions will give the largest printed area?
13. Fnd the derivative of the following functions:
(a) $f(x)=3 x^{2}+e^{x}-5 x^{3}+\ln x$
(b) $g(x)=\frac{3 x^{2}-9}{10-5^{x}+e^{3}}$
(c) $h(x)=\left(e^{\left(10 x^{3}-9 x\right)}-10\right)\left(9 x^{6}-2 x^{3}-\log _{8}\left(5 x^{3}\right)\right)$
