School: ________________________________

Team Number: __________, Fill in only if your school is submitting more than one entry.

Print the names of all team members in the space below. An ineligible name is cause for disqualification of the team’s entry.

Team Members

__

__

__

__

__
Before getting to the problems several terms are defined. Let \(f : [a, b] \to [a, b] \) denote a function defined on the closed interval \([a, b]\), which maps this interval into itself. That is,

\[
\text{if } a \leq x \leq b \text{ then } a \leq f(x) \leq b.
\]

The terms fixed point of, \(n^{\text{th}} \) iterate of, zero of, and orbit of \(f \) are defined below.

A point \(\xi \in [a, b] \) is called a fixed point of \(f \), if \(f(\xi) = \xi \).

The \(n^{\text{th}} \) iterate of \(f \), denoted by \(f^{(n)} \) is the composition of \(f \) with itself \(n \) times. That is,

\[
\begin{align*}
 f^{(0)}(x) &= x \\
 f^{(1)}(x) &= f(x) \\
 f^{(2)}(x) &= f(f^{(1)}(x)) \\
 & \quad \vdots \\
 f^{(n+1)}(x) &= f(f^{(n)}(x)).
\end{align*}
\]

An orbit of \(f \) is a set of \(k \) distinct points \(\{x_1, \ldots, x_k\} \) in \([a, b]\) such that \(x_{i+1} = f(x_i) \) for \(i = 1, \ldots, k - 1 \), and \(f(x_k) = x_1 \). The orbit is said to have length \(k \).

Note that if \(f : [a, b] \to [a, b] \), then the \(n^{\text{th}} \) iterate of \(f \) is defined for all natural numbers \(n \). It is also clear that if \(\{x_1, \ldots, x_k\} \) is an orbit of \(f \), then each \(x_i \) is a fixed point of the \(k^{\text{th}} \) iterate, \(f^{(k)} \), of \(f \).

Define the function \(f \) by

\[
 f(x) = \begin{cases}
 2x, & 0 \leq x \leq \frac{1}{2} \\
 2 - 2x, & \frac{1}{2} < x \leq 1
 \end{cases}.
\]

This function is sometimes referred to as the baker’s function as it emulates kneading bread dough. To understand this, picture a roll of bread dough, stretch it to twice its length and then fold it on top of itself so that the two ends overlap. One method of kneading dough is to iterate this process.

1. Show that the function \(f \) maps the interval \([0, 1]\) into itself. That is, if \(0 \leq x \leq 1 \), then \(0 \leq f(x) \leq 1 \). Thus, the iterates of this function are defined.

2. Find the fixed points of \(f \).

3. Find a formula for \(f^{(2)} \) and graph the function.

4. Find the fixed points of \(f^{(2)} \).

5. For an arbitrary positive integer \(n \), graph the function \(f^{(n)} \). Be sure to clearly show for which values of \(x \) we have \(f^{(n)}(x) = 1 \) or \(f^{(n)}(x) = 0 \).

6. Find a formula for \(f^{(n)} \).
7. For \(n = 1, 2, \ldots \), let \(F_n \) denote the fixed points of \(f^{(n)} \). That is,

\[
F_n = \left\{ \xi \in [0, 1] : f^{(n)}(\xi) = \xi \right\}.
\]

How many points are in \(F_n \) and what are they?

8. Show that the length of any orbit of \(f \) that is contained in \(F_n \) must divide \(n \).

9. If \(p \) is a prime number, show that \(F_p \) contains only orbits of length 1 and length \(p \). How many of each type are there?

10. Show that if \(m \) divides \(n \), then \(F_m \subseteq F_n \). That is, any fixed point of \(f^{(m)} \) is also a fixed point of \(f^{(n)} \).

11. If \(r \) divides \(n \) must \(F_n \) contain an orbit of length \(r \)?

12. Let \(m \) and \(n \) be positive integers. How many elements are in the set \(F_m \cap F_n \)?

13. Let \(P_0 = \bigcup_{n=1}^{\infty} F_n \), \(P_1 = f^{-1}(P_0) \), and in general \(P_n = f^{-1}(P_{n-1}) \). Set \(\overline{P} = \bigcup_{n=0}^{\infty} P_n \). The set \(P_0 \) consists of all possible periodic points. The sets \(P_n \), for \(n > 0 \), consists of all points that are periodic after \(n \) or less iterations of \(f \). Thus, \(1/3 \in P_1 \), since \(f(1/3) = 2/3 \in F_1 \subseteq P_0 \).

(a) Show that \(P_n \subseteq P_{n+1} \) for \(n = 0, 1, \ldots \).

(b) Characterize the points in \(\overline{P} \). That is, give a simple condition on \(x \) that is both necessary and sufficient for \(x \) to belong to \(\overline{P} \).

14. One more item. Suppose you decide to knead some bread dough with repetitions of the following procedure: stretch the dough to twice its original length then turn the first fourth over the second forth, and the last forth over the third forth. See the picture below. What function \(f : [0, 1] \rightarrow [0, 1] \) models this procedure?