AB EXAM SOLUTIONS

TEXAS A\&M HIGH SCHOOL MATH CONTEST

 NOVEMBER 16, 20131. Now $\frac{a+b}{2}=x$ and $\frac{b+x}{2}=\frac{a+b+1}{2}$, so $a+b=2 x$ and

$$
\begin{aligned}
b+x & =a+b+1 \\
x & =a+1 \\
2 a+2 & =a+b \\
a+2 & =b \\
a-b & =-2
\end{aligned}
$$

2.

$$
\begin{aligned}
2 x^{2}+8 x y+8 y^{2} & =2\left(x^{2}+4 x y+4 y^{2}\right) \\
& =2(x+2 y)(x+2 y) \\
& =2(4)(4) \\
& =32,
\end{aligned}
$$

the length of a side. So the perimeter is $4(32)=128$.
3. $m+2 n$ is the largest, so it is the length of the hypotenuse. Now

$$
\begin{aligned}
(m+2 n)^{2} & =(m+n)^{2}+m^{2} \\
m^{2}+4 m n+4 n^{2} & =m^{2}+2 n m+n^{2}+m^{2} \\
m^{2}-2 m n-3 n^{2} & =0
\end{aligned}
$$

Divide by n^{2} to obtain

$$
\begin{aligned}
\left(\frac{m}{n}\right)^{2}-2\left(\frac{m}{n}\right)-3 & =0 \\
\left(\frac{m}{n}-3\right)\left(\frac{m}{n}+1\right) & =0 \\
\frac{m}{n} & =3
\end{aligned}
$$

4. Each elephant has 4 knees, so

$$
4 E+2 M=100
$$

Counting trunks we have

$$
E+3 M=100 .
$$

Solving the system gives $M=30$ and $E=10$. So $\frac{E}{M}=\frac{10}{30}=\frac{1}{3}$.
5. Let $x=2$ to obtain $3 g(2)+2 g(-1)=13$ and let $x=-1$ to obtain $3 g(-1)+2 g(2)=7$. Solving

$$
\begin{aligned}
3 g(2)+2 g(-1) & =13 \\
2 g(2)+3 g(-1) & =7
\end{aligned}
$$

gives $g(2)=5$ and $g(-1)=-1$.
6. Since p and q are roots then $p+q=6$ and $p q=2$. So

$$
\frac{1}{p}+\frac{1}{q}=\frac{q+p}{q p}=\frac{6}{2}=3 .
$$

7. Hasse walks 4 blocks and flips the coin 3 times. He will arrive at his starting point with either RRR or LLL. There are $2^{3}=8$ possibilities, RLR, RRL, LRL, etc. So the probability Hasse returns to the starting point is $\frac{2}{8}=\frac{1}{4}$.
8. See below:

9. Now $f(5 w)=f(25 w / 5)=(25 w)^{2}+25 w+3=625 w^{2}+25 w+3$. We want

$$
\begin{aligned}
625 w^{2}+25 w+3 & =2013 \\
625 w^{2}+25 w-2010 & =0 \\
125 w^{2}+5 w-402 & =0 \\
w^{2}+\frac{1}{25} w-\frac{402}{125} & =0 .
\end{aligned}
$$

The sum of the roots in this quadratic is $-\frac{1}{25}$.
10. There are eight letters with I repeated 3 times and N two times.

$$
\frac{8!}{3!2!}=8 \cdot 7 \cdot 5 \cdot 4 \cdot 3=3360
$$

11.

$$
\begin{aligned}
\sqrt{4-x}+\sqrt{4+x} & =2 x \\
(\sqrt{4-x}+\sqrt{4+x})^{2} & =(2 x)^{2} \\
4-x+2 \sqrt{4-x} \sqrt{4+x}+4+x & =4 x^{2} \\
2 \sqrt{4-x} \sqrt{4+x} & =4 x^{2}-8 \\
\sqrt{4-x} \sqrt{4+x} & =2 x^{2}-4 \\
(\sqrt{4-x} \sqrt{4+x})^{2} & =\left(2 x^{2}-4\right)^{2} \\
(4-x)(4+x) & =4 x^{4}-16 x^{2}+16 \\
16-x^{2} & =4 x^{4}-16 x^{2}+16 \\
4 x^{4}-15 x^{2} & =0 \\
x^{2}\left(4 x^{2}-15\right) & =0
\end{aligned}
$$

giving $x=0, x= \pm \frac{\sqrt{15}}{2}$. Substituting $x=0$ and $x=-\frac{\sqrt{15}}{2}$ back into the equation shows they are not solutions.
12. Since $2013=3(671)$, then 671 numbers are divisible by 3 . Also $2013=$ $7(287)+4$ means 287 are divisible by 7 , and $2013=21(95)+18$ means 95 are divisible by both 3 and 7 . We conclude that $287+671-95=863$ are divisible be either 3 or 7 (or perhaps both). So $2013-863=1150$ are divisible by neither 3 nor 7 .
13. Let x have ones digit a and tens digits b. Then $x=10 b+a$ and

$$
\begin{aligned}
4(10 b+a)-5(10 a+b) & =4 \\
40 b+4 a-50 a-5 b & =4 \\
35 b-46 a & =4 \\
35 b & =2(2+23 a)
\end{aligned}
$$

Now 5 and 7 must divide $2+23 a$ with $a \in\{1,2, \ldots, 9\}$. So $a=6$ and from this we obtain $b=8$. Thus, $x=86$.
14. Now

$$
9=\left(x+\frac{1}{x}\right)^{2}=x^{2}+2+\frac{1}{x^{2}}
$$

so

$$
\begin{aligned}
x^{2}+\frac{1}{x^{2}} & =7 \\
\left(x^{2}+\frac{1}{x^{2}}\right)^{2} & =49 \\
x^{4}+2+\frac{1}{x^{4}} & =49 \\
x^{4}+\frac{1}{x^{4}} & =47 .
\end{aligned}
$$

15. Consider

$$
\begin{array}{r}
95 d \\
-\quad d 59 \\
\hline
\end{array}
$$

In the units position we necessarily have $d<9$ and in the subtraction process one needs to "borrow" a one from the tens position. This gives

$$
\begin{array}{r}
95 d \\
-\quad d 59 \\
\hline * 9 *
\end{array}
$$

Again one needs to "borrow" a 1 from the hundreds position and either $8-d=5$ or $1 d-9=5$. The latter works with $d=4$:

954
$-\underline{459}$
495
16. Now $4^{300}=2^{600}>2^{500}$ so keep 2^{500}. Also, $2^{500}=\left(2^{5}\right)^{100}=32^{100}<$ $81^{100}=\left(3^{4}\right)^{100}=3^{400}$, so again keep 2^{500}. Finally $2^{500}=32^{100}>25^{100}=$ $\left(5^{2}\right)^{100}=5^{200}$ and 5^{200} is smallest.
17. The graph of $y=|4 x-8|$ is as picture

The region in question is the triangular region bounded by the above graph and the horizontal line $y=12$. The vertices of this triangle are $(-1,12),(5,12),(2,0)$; an isosceles triangle. The length of the base is $5-(-1)=6$ and height is 12 . So the area is $(1 / 2)(6)(12)=36$.
18.

$$
\begin{aligned}
\frac{n^{2}-38}{n+1} & =\frac{n^{2}-1+1-38}{n+1} \\
& =\frac{n^{2}-1}{n+1}-\frac{37}{n+1} \\
& =n-1-\frac{37}{n+1}
\end{aligned}
$$

The largest n such that $\frac{37}{n+1}$ is an integer is $n+1=37$ or $n=36$.
19. The pattern repeats with a "fundamental period" of length 11. Since $2013=183 \cdot 11+0$, then the letter in position 2013 will be the same as that in the $11^{\text {th }}$ position, namely R.
20. Since $2013=7(287)+4$, then

$$
\begin{aligned}
2013 & \equiv 4 \bmod 7 \\
(2013)^{2} & \equiv 16 \equiv 2 \bmod 7 \\
(2013)^{3} & \equiv 8 \equiv 1 \bmod 7 \\
(2013)^{4} & \equiv 4 \bmod 7
\end{aligned}
$$

Note that $4+2+1 \equiv 0 \bmod 7$. So

$$
S \equiv 1+(4+2+1)+(4+2+1)+\cdots \quad(\bmod 7)
$$

We have

$$
\begin{aligned}
(2013)^{2013} & \equiv(4)^{2013} \bmod 7 \\
& \equiv(4)^{(3)(671)} \bmod 7 \\
& \equiv(1)^{671} \bmod 7 \\
& \equiv 1 \bmod 7
\end{aligned}
$$

and

$$
\begin{aligned}
S & \equiv 1+(4+2+1)+(4+2+1)+\cdots \quad(\bmod 7) \\
& \equiv 1 \bmod 7
\end{aligned}
$$

21. There are 13 letters with N and U repeated. So there are $\frac{(13)!}{2!2!}$ distinct arrangements. The vowels are A,E,I,O,U,U. (6 in all). To form an arrangement with the vowels in alphabetical order, we first form an arrangement of the non-vowels ($7!/ 2$ different ways) and then insert the six vowels in alphabetical order. This latter is done by selecting a subset of 6 elements from $\{1,2, \ldots, 13\}$ to obtain positions for the 6 vowels. (Example: $\{2,5,9,10,12,13\}$ means A is in position $2, \mathrm{E}$ is in position 5 , I is in position 9 , etc.) So our arrangment can be found in $\frac{7!}{2}\binom{13}{6}$ different ways. The probability is

$$
\frac{\frac{7!}{2}\binom{13}{6}}{\frac{(13)!}{2 \cdot 2}}=\frac{2 \cdot 7!}{(13)!} \frac{(13)!}{7!\cdot 6!}=\frac{2}{6!}=\frac{1}{6 \cdot 5 \cdot 4 \cdot 3}=\frac{1}{360}
$$

