CD Exam, Solutions
 Texas A\&M High School Math Contest
 Nov. 16, 2013

1. Let A and B be the ages of Ann and Barbara, respectively. Then $B-A / 2$ years ago Barbara was half as old as Ann is. Ann was then $A-(B-A / 2)=\frac{3}{2} A-B$ years old. Barbara was that old $B-\left(\frac{3}{2} A-B\right)=2 B-\frac{3}{2} A$ years ago. Ann was then $A-\left(2 B-\frac{3}{2} A\right)=\frac{5}{2} A-2 B$ years old. Therefore

$$
B=\frac{5}{2} A-2 B
$$

or $3 B=\frac{5}{2} A$. We have $A+B=44$, hence $3(44-A)=\frac{5}{2} A$, so $132=\frac{5}{2} A+3 A=\frac{11}{2} A$, hence $A=24$, and $B=20$.
2. Radius of the inscribed circle is $1 / 3$ of the height, i.e., $s \frac{\sqrt{3}}{6}$. Then the side of the square is $\sqrt{2}$ times the radius, i.e., $s \frac{\sqrt{6}}{6}=s \frac{1}{\sqrt{6}}$. The area of the square is hence $s^{2} / 6$.
3. Consider the following cases
(a) $x \leq-1$;
(b) $-1<x \leq 0$;
(c) $0<x \leq 1$;
(d) $1<x \leq 2$;
(e) $2<x$.

Then the equation is equivalent to
(a) $(-x-1)+x+3(-x+1)-2(-x+2)=x+2,-x-2=x+2$, hence $x=-2$.
(b) $(x+1)+x+3(-x+1)-2(-x+2)=x+2, x=x+2$, contradiction.
(c) $(x+1)-x+3(-x+1)-2(-x+2)=x+2,-x=x+2, x=-1$, which does not satisfy the condition $0<x \leq 1$.
(d) $(x+1)-x+3(x-1)-2(-x+2)=x+2,5 x-6=x+2, x=2$.
(e) $(x+1)-x+3(x-1)-2(x-2)=x+2, x+2=x+2$ is satisfied for all $x>2$.

Answer: $x=-2$ and all $x \geq 2$.
4. We have $\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)$, hence

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\cdots+\frac{1}{2011 \cdot 2013}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\cdots+\frac{1}{2011}-\frac{1}{2013}\right)=\frac{1}{2}\left(1-\frac{1}{2013}\right)=\frac{1006}{2013}
$$

5. It is the same as the last digit of the product of the last digits of these numbers, which is $(2 \cdot 4 \cdot 6 \cdot 8)^{10}=384^{10}$, hence it is the same as the last digit of $4^{10}=1024^{2}$, hence it is the same as the last digit of $4^{2}=16$, i.e., it is 6 .
6. We consider the cases $x \leq-2,-2 \leq x \leq 1$, and $x \geq 1$. In the first case the inequality is equivalent to $1-x-2-x<5$, which is equivalent to $-2 x<6$, or $x>-3$. This gives us the interval $-3<x \leq-2$.

In the second case we get $1-x+x+2<5$, which is always true, hence the set $-2 \leq x \leq 1$ belongs to the set of solutions.

In the third case we get $x-1+x+2<5$, i.e., $2 x<4, x<2$. This gives us $1 \leq x<2$.
It follows that the set of solutions is the interval $(-3,2)$.
7. The 1's are on the places number $1,1+2=3,1+2+3=6,1+2+3+4=10, \ldots$, i.e., on places of the form $\frac{n(n+1)}{2}$. Let us find the biggest number n such that $\frac{n(n+1)}{2} \leq 1234$. The inequality is equivalent to $n^{2}+n \leq 2468$. Roots of $x^{2}+x-2468$ are $\frac{-1 \pm \sqrt{1+4 \cdot 2468}}{2}=\frac{-1 \pm \sqrt{9873}}{2}$. We have $99<\sqrt{9873}<100$, hence the positive root is between $\frac{-1+99}{2}=49$ and $\frac{-1+10^{2}}{2}=49.5$. It follows that in the first 1234 elements of the sequence we have 49 ones. Consequently, the sum is $2 \cdot 1234-49=2468-49=2419$.
8. The equation is equivalent to $(2 k-1) x^{2}-8 x+6=0$. Its discriminant is

$$
D=64-4 \cdot(2 k-1) \cdot 6=64-48 k+24=88-48 k
$$

The equation has no real roots if and only if $88-48 k<0$, i.e., $k>\frac{88}{48}=\frac{11}{6}=1+\frac{5}{6}$. Hence, the answer is $k=2$.
9. The region is the annular area between the circle and concentric circle of radius $\sqrt{1+4}=\sqrt{5}$. Its area is $5 \pi-4 \pi=\pi$.
10. The equation is equivalent to $5^{A} 2^{B}=200^{C}$, i.e., to $5^{A} 2^{B}=5^{2 C} 2^{3 C}$, which is in turn equivalent to $A=2 C, B=3 C$. It follows that $\frac{A}{B}=\frac{2}{3}$, and since A and B can not have common factors, the only possibility is that $A=2$ and $B=3$, hence $C=1$.
11. We have $x^{3}=x^{2}-x+2$, hence $p^{3}+q^{3}+r^{3}=p^{2}-p+2+q^{2}-q+2+r^{2}-r+2=p^{2}+q^{2}+r^{2}-(p+q+r)+6$. We have $p+q+r=1$, and $p q+q r+p r=1$, hence $1=(p+q+r)^{2}=p^{2}+q^{2}+r^{2}+2(p q+q r+p r)=p^{2}+q^{2}+r^{2}+2$, hence $p^{2}+q^{2}+r^{2}=-1$, so that

$$
p^{3}+q^{3}+r^{3}=-1-1+6=4
$$

12. Taking square of the equation, we get $2-\sqrt{2+x}=x^{2}$, or $\sqrt{2+x}=2-x^{2}$. Squaring again, we get $2+x=\left(2-x^{2}\right)^{2}$, i.e., $2+x=4-4 x^{2}+x^{4}$. We see that $x^{4}-4 x^{2}-x+2=0$. We have

$$
\begin{aligned}
& x^{4}-4 x^{2}-x+2=x^{2}\left(x^{2}-4\right)-(x-2)=x^{2}(x-2)(x+2)-(x-2)= \\
& (x-2)\left(x^{3}+2 x^{2}-1\right)=(x-2)\left(x^{3}+x^{2}+x^{2}-1\right)= \\
& \quad(x-2)\left(x^{2}(x+1)+(x-1)(x+1)\right)=(x-2)(x+1)\left(x^{2}+x-1\right)
\end{aligned}
$$

Roots of $x^{2}+x-1$ are $\frac{-1 \pm \sqrt{1+4}}{2}=\frac{-1 \pm \sqrt{5}}{2}$, hence roots of $x^{4}-4 x^{2}-x+2$ are $2,-1, \frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}$.
Negative roots are not allowed, since $x=\sqrt{2-\sqrt{2+x}}$ is positive. The root $x=2$ is also not allowed, since then $\sqrt{2-\sqrt{4}}=0 \neq x$. Only $x=\frac{\sqrt{5}-1}{2}$ remains.
13. Subtracting the equations, we have $x^{2}-y^{2}+y-x=0$, hence $(x-y)(x+y-1)=0$. If $x=y$, then $x^{2}+x=3 / 4$, so $x=1 / 2$ or $x=-3 / 2$, which gives solutions $(x, y)=(1 / 2,1 / 2)$ and $(x, y)=(-3 / 2,-3 / 2)$.

If $x+y=1$, then $y=1-x$, and $x^{2}+1-x=3 / 4, x^{2}-x+1 / 4=0$, which again gives the solution $(x, y)=(1 / 2,1 / 2)$.
14. Draw the circle with center in P and radius $A P$. Then B is on the circle, since $P A=P B$. The vertex C is also on the circle, since $\angle A P B$ is twice $\angle A C B$. Let B_{1} be the second intersection of the line $P B$ with the circle. Then $D B_{1}=1, B D=5$. Triangles $\triangle B D A$ and $\triangle C D B_{1}$ are similar, hence $\frac{A D}{B D}=\frac{D B_{1}}{C D}$, so that $A D \cdot C D=B D \cdot D B_{1}=5$.

15. Length of each side of the hexagon is 1 . Let $A_{2} B_{1}=x$. Then $\triangle A_{1} B_{2} B_{1}$ is right triangle with $\angle B_{2} A_{1} B_{1}=60^{\circ}$. It follows that $A_{1} B_{2}=\frac{x+1}{2}$, hence $A_{6} B_{2}=\frac{x+3}{2}$. By the same arguments, $A_{6} B_{3}=\frac{x+3}{4}$, $A_{5} B_{3}=\frac{x+7}{4}, A_{5} B_{4}=\frac{x+7}{8}, A_{4} B_{4}=\frac{x+15}{8}, A_{4} B_{5}=\frac{x+15}{16}, A_{3} B_{5}=\frac{x+31}{16}, A_{3} B_{6}=\frac{x+31}{32}, A_{2} B_{6}=\frac{x+63}{32}$, $A_{2} B_{7}=\frac{x+63}{64}$. Since $B_{7}=B_{1}$, we have $x=\frac{x+63}{64}$, hence $64 x=x+63$, so $63 x=63$, hence $x=1$. It follows that $A_{1} B_{1}=2$.

16. We have to find the number of possible solutions of the equation $10 d+25 q=1000$ in positive integers. It is equivalent to the equation $2 d+5 q=200$. We have that d must be divisible by 5 and satisfy $1 \leq d<100$, hence $1 \leq d / 5 \leq 19$, and we have 19 possibilities for d. In each of these cases $q=\frac{200-2 d}{5}=40-2 \cdot \frac{d}{5}$ is a positive integer. Consequently, the answer is 19.
17. Draw the bisector of the angle D. Let D_{1} be its intersection with $A B$. Since $A B$ is parallel to $C D$, $\angle A D D_{1}=\angle D_{1} D C=\angle A D_{1} D$, hence $\triangle A D D_{1}$ is isosceles, hence $A D_{1}=A D=a$. Quadrilateral $D D_{1} B C$ has two parallel sides and two equal opposite angles, $\angle D_{1} D C=\angle D_{1} B C$, hence it is a parallelogram. Consequently, $B D_{1}=C D=b$. It follows that $A B=a+b$.

18. Let S be the area of the triangle. The area of the largest part is S minus the area of a similar triangle with similarity coefficient $9 / 10$. Its area is $0.9^{2} S$. It follows that $S-0.9^{2} S=38$, or $(1-0.81) S=38$, $0.19 S=38$, hence $S=200$.
19. We have $P(0)=0$, hence $P(1)=P\left(0^{2}+1\right)=(P(0))^{2}+1=1$, hence $P(2)=P\left(1^{2}+1\right)=P(1)^{2}+1=2$, hence $P(5)=P\left(2^{2}+1\right)=(P(2))^{2}+1=5, P(26)=P\left(5^{2}+1\right)=(P(5))^{2}+1=26$, etc. This way we get an infinite sequence a_{n} given by the relation $a_{n+1}=a_{n}^{2}+1$ such that $P\left(a_{n}\right)=a_{n}$. Since for two different polynomials $P(x)$ and $Q(x)$ the set of solutions of the equation $P(x)=Q(x)$ is finite, it follows that $P(x)=x$.
20. Either y or t is the biggest number among x, y, z, t. Let us assume that it is t. Then $x+y \leq 2 t$, hence z is either 1 or 2 . If $z=2$, then $x=y=t$, and the second equation is $2+t=2 t$, which implies that $x=y=z=t=2$.

If $z=1$, then $1+t=x y$ and $x+y=t$, which implies that $1+x+y=x y$, hence $2=1-x-y+x y$, i.e., $2=(x-1)(y-1)$. Since we assume that $x \leq y$, this implies that $x=2$ and $y=3$. Then $t=x+y=5$. We get a solution $(x, y, z, t)=(2,3,1,5)$.

If y is the biggest number, then the same arguments give us solutions $(x, y, z, t)=(2,2,2,2)$ and $(1,5,2,3)$.
Consequently, the solutions are $(2,2,2,2),(2,3,1,5)$, and $(1,5,2,3)$.
21. Multiplying the equation by 7 !, we get

$$
5 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 a_{2}+4 \cdot 5 \cdot 6 \cdot 7 a_{3}+5 \cdot 6 \cdot 7 a_{4}+6 \cdot 7 a_{5}+7 a_{6}+a_{7}
$$

or

$$
3600=7\left(6\left(5\left(4\left(3 a_{2}+a_{3}\right)+a_{4}\right)+a_{5}\right)+a_{6}\right)+a_{7}
$$

Since $0 \leq a_{7}<7$, it follows that a_{7} is the remainder of division of 3600 by 7 , hence $a_{7}=2$, and

$$
514=6\left(5\left(4\left(3 a_{2}+a_{3}\right)+a_{4}\right)+a_{5}\right)+a_{6}
$$

By the same argument, a_{6} is the remainder of division of 514 by 6 , hence $a_{6}=4$, and

$$
85=5\left(4\left(3 a_{2}+a_{3}\right)+a_{4}\right)+a_{5}
$$

We see that $a_{5}=0$, hence

$$
17=4\left(3 a_{2}+a_{3}\right)+a_{4}
$$

$a_{4}=1$, and

$$
4=3 a_{2}+a_{3}
$$

hence $a_{3}=1$ and $a_{2}=1$.
Answer: $\left(a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)=(1,1,1,0,4,2)$.

