Solutions to EF Exam

Texas A\&M High School Math Contest
16 November, 2013

1. Let n be the number of baseball cards Paul started with. He gave his third friend $n-\frac{1}{2} n-\frac{1}{3} \cdot \frac{1}{2} n=$ 12 cards, so $6 n-3 n-n=72$, or $n=\mathbf{3 6}$ cards.
2. The remainder is the same as when 3^{2013} is divided by 10 . The sequence of numbers $3^{n} \mid 10$ is $\{3,9,7,1,3,9 \cdots\}$, so $2013^{2013}\left|10=3^{2013}\right| 10=3^{1} \mid 10=\mathbf{3}$.
3. Let x and y be the numbers. Then $x y=12$, and $\frac{x^{3}-y^{3}}{(x-y)^{3}}=\frac{x^{2}+x y+y^{2}}{x^{2}-2 x y+y^{2}}=\frac{x^{2}+12+y^{2}}{x^{2}-24+y^{2}}=19$. Clearing the fractions yields $18 x^{2}+18 y^{2}=12+19(24)$, or $x^{2}+y^{2}=26$. Adding $2 x y=24$ to both sides yields $(x+y)^{2}=50$, or $x+y=\mathbf{5} \sqrt{\mathbf{2}}$.
4. Since $\triangle A B C$ is an equilateral triangle, $\triangle A C E$ is a 30-60-90 triangle. Further, $m \angle B C F=120^{\circ}$, so $\triangle O C E$ and $\triangle O C F$ are also 30-60-90 triangles which are congruent to $\triangle A C E$. Therefore, $O F=A E=\mathbf{3} \sqrt{\mathbf{3}}$.
5. Extend segments $\overline{T A}$ and $\overline{U M}$ until they intersect at point X. Since $\angle A M X=\angle U A X$, $\triangle A M X \sim \triangle U A X$, so $\frac{M X}{A X}=\frac{A M}{U A}=\frac{5}{10}$, or $A X=2 M X$. From right triangle $A M X$, $M X^{2}+(2 M X)^{2}=5^{2}$, or $M X=\sqrt{5}$ and $A X=2 \sqrt{5}$. Since $\frac{A X}{U X}=\frac{5}{10}$ as well, we have $U X=2 A X=4 \sqrt{5}$. Therefore, $U M=U X-M X=\mathbf{3} \sqrt{\mathbf{5}}$.
6. Let r and s be the roots of $p(x)$. Then $r+s=-\frac{1}{2}$ and $r s=-\frac{13}{2}$. The sum and product of the roots of $q(x)$ must be $\frac{1}{r}+\frac{1}{s}=\frac{r+s}{r s}=\frac{1}{13}$ and $\frac{1}{r} \cdot \frac{1}{s}=-\frac{2}{13}$. Therefore, $q(x)=x^{2}+\frac{1}{13} x-\frac{2}{13}=$ $13 \mathrm{x}^{2}+\mathrm{x}-2$.
7. Let z and w be the two numbers. Since $z^{2}=w$ and $w^{2}=z$, we must have $z^{4}=z$, or $z(z-1)\left(z^{2}+z+1\right)=0$. If $z=0, w=0$ and the numbers are not distinct. Similarly, if $z=1, w=1$ and again the numbers are not distinct. Therefore, we must have $z^{2}+z+1=0$, or, from the quadratic formula: $z=\frac{-1 \pm \sqrt{1-4}}{2}=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$. But $w^{4}=w$ as well, so we also have $w=-\frac{1}{2} \mp \frac{\sqrt{3}}{2} i$. Then $z-w=\sqrt{3} i$ or $-\sqrt{3} i$, so $|z-w|=\sqrt{\mathbf{3}}$.
8. $\tan (3 \theta)=\cot (4 \theta)=\tan \left(\frac{\pi}{2}-4 \theta\right)$. Thus, $3 \theta=n \pi+\left(\frac{\pi}{2}-4 \theta\right)$, or $\theta=\frac{2 n \pi+\pi}{14}$. Therefore, the smallest positive solution is $\theta=\frac{\pi}{\mathbf{1 4}}$.
9. $\tan \left(54^{\circ}\right)\left(\cos \left(54^{\circ}\right)+\cos \left(162^{\circ}\right)=\sin \left(54^{\circ}\right)+\frac{\sin \left(54^{\circ}\right) \cos \left(162^{\circ}\right)}{\cos \left(54^{\circ}\right)}=\sin \left(54^{\circ}\right)+\frac{\sin \left(216^{\circ}\right)-\sin \left(108^{\circ}\right)}{2 \cos \left(54^{\circ}\right)}\right.$ $=\sin \left(54^{\circ}\right)-\frac{\sin \left(36^{\circ}\right)}{2 \cos \left(54^{\circ}\right)}-\frac{2 \sin \left(54^{\circ}\right) \cos \left(54^{\circ}\right)}{2 \cos \left(54^{\circ}\right)}=-\frac{\cos \left(54^{\circ}\right)}{2 \cos \left(54^{\circ}\right)}=-\frac{\mathbf{1}}{\mathbf{2}}$.
10. Let a be the x-coordinate of the point of tangency. Then $m=f^{\prime}(a)=3 a^{2}$, and the equation of the tangent line is $y=a^{3}+3 a^{2}(x-a)$. This line intersects $y=x^{3}$ when $a^{3}+3 a^{2} x-3 a^{3}=x^{3}$, or $x^{3}-3 a^{2} x+2 a^{2}=0$. Using the fact that the line is tangent at $x=a$, we can factor the left as $(x-a)^{2}(x+2 a)=0$, so the line intersect f at $x=-2 a$. Therefore, the slope of the tangent line at the point is $3(-2 a)^{2}=12 a^{2}=4 \mathbf{m}$.
11. By letting $u=2 x$, we have $\int_{0}^{2} f(2 x) d x=\frac{1}{2} \int_{0}^{4} f(u) d u=\frac{1}{2}(6+12)=\mathbf{9}$.
12. $g^{\prime}(x)=e^{-x} f^{\prime}(x)-e^{-x} f(x) . f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}+2=3 x^{2}+2$ and $f(x)=x^{3}+2 x+f(0)=x^{3}+2 x+1$. Therefore, $g^{\prime}(3)=e^{-3}(29)-e^{-3}(34)=-\mathbf{5} \mathbf{e}^{-\mathbf{3}}$.
13. $f(x)=1+x-x^{2}-x^{3}+x^{4}+x^{5}-x^{6}-x^{7}+\cdots=\left(1-x^{2}+x^{4}-x^{6}+x^{8} \cdots\right)+\left(x-x^{3}+x^{5}-x^{7}+x^{9}+\cdots\right)$. Since the two expressions are convergent geometric series, their sum is $\frac{1}{1+x^{2}}+\frac{x}{1+x^{2}}=\frac{\mathbf{1}+\mathbf{x}}{\mathbf{1 + \mathbf { x } ^ { 2 }}}$.
14. For $x>0, \sec (\arctan (x))=\sqrt{\tan ^{2}(\arctan (x))+1}=\sqrt{x^{2}+1}$, so $x_{2}=\sqrt{2}, x_{3}=\sqrt{3}, \cdots x_{2013}=$ $\sqrt{2013}$.
15. Using algebra and calculus, we can show that C_{1} and C_{2} intersect in the point $Q\left(\frac{r^{2}}{2}, \frac{r}{2} \sqrt{4-r^{2}}\right)$ and the equation of the line through P and Q is $y=\frac{\sqrt{4-r^{2}}-2}{r} x+r$. Therefore, the x-intercept is $a=-\frac{r^{2}}{\sqrt{4-r^{2}}-2}=\sqrt{4-r^{2}}+2$, so $\lim _{r \rightarrow 0^{+}} a=4$.
Alternately, we can find the limit geometrically using the figure below, defining R to be the desired x-intercept :

$\angle P Q S, \angle O Q T$, and $\angle S Q R$ are all right angles (first 2 subtend diameters; the last is complementary to the first), so $\angle O Q S=\angle T Q R$. Further, using appropriate right triangles we see that $\angle O S Q=\angle T R Q=90-\angle O P Q$, so $\triangle S O Q \sim \triangle R T Q$. But $\triangle S O Q$ is isosceles; therefore $\triangle R T Q$ is also isosceles and $Q T=T R$. As $r \rightarrow 0^{+}$, point Q approaches the origin, so $Q T \rightarrow O T=2$ and $T R \rightarrow 2$. Therefore, $O R \rightarrow 4$, so $a \rightarrow 4$.
16. Define $f(t)=\int_{0}^{1} \frac{\ln (t x+1)}{x^{2}+1} d x$. Then $f(0)=0, f(1)=$ our desired solution, and $f^{\prime}(t)=$ $\int_{0}^{1} \frac{x}{(t x+1)\left(x^{2}+1\right)} d x$. Using partial fractions, we obtain $f^{\prime}(t)=\frac{1}{t^{2}+1} \int_{0}^{1}\left(\frac{-t}{t x+1}+\frac{x+t}{x^{2}+1}\right) d x$ $=\frac{1}{t^{2}+1}\left(-\ln (t x+1)+\frac{1}{2} \ln \left(x^{2}+1\right)+\left.t \arctan x\right|_{x=0} ^{x=1}=\frac{1}{t^{2}+1}\left(-\ln (t+1)+\frac{1}{2} \ln 2+\frac{\pi t}{4}\right.\right.$. Integrate both sides from 0 to $t: \quad f(t)-f(0)=\frac{1}{2} \ln 2 \arctan t+\frac{\pi}{8} \ln \left(t^{2}+1\right)-\int_{0}^{t} \frac{\ln (x+1)}{x^{2}+1} d x$. Since the last term on the right is $f(t)$, we have $f(t)=\frac{1}{4} \ln 2 \arctan t+\frac{\pi}{16} \ln \left(t^{2}+1\right)$. Therefore, $f(1)=\frac{\pi \ln 2}{8}$
17. Since $f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}$, we also have $f^{\prime}(x)=f^{\prime}\left(\frac{a}{\frac{a}{x}}\right)=\frac{\frac{a}{x}}{f\left(\frac{a}{x}\right)}=\frac{a}{x f\left(\frac{a}{x}\right)}$. Differentiate both sides to yield $f^{\prime \prime}(x)=-\frac{a}{x^{2} f\left(\frac{a}{x}\right)}+\frac{a^{2} f^{\prime}\left(\frac{a}{x}\right)}{x^{3}\left(f\left(\frac{a}{x}\right)\right)^{2}}$. Use the first two equations to substitute for $f\left(\frac{a}{x}\right)$ and $f^{\prime}\left(\frac{a}{x}\right)$ to yield $f^{\prime \prime}(x)=-\frac{f^{\prime}(x)}{x}+\frac{\left(f^{\prime}(x)\right)^{2}}{f(x)}$. Clear the fractions and the right hand side to obtain $x f(x) f^{\prime \prime}(x)+f^{\prime}(x) f(x)-x\left(f^{\prime}(x)\right)^{2}=0$. Divide by $(f(x))^{2}$: $\frac{x f(x) f^{\prime \prime}(x)+f^{\prime}(x) f(x)-x\left(f^{\prime}(x)\right)^{2}}{(f(x))^{2}}=0$, or $\frac{f(x)\left(x f^{\prime \prime}(x)+f^{\prime}(x)\right)-f^{\prime}(x) \cdot x f^{\prime}(x)}{(f(x))^{2}}=0$. Since the left side is the derivative of $\frac{x f^{\prime}(x)}{f(x)}$, this expression must be a constant (call it d). Then $\frac{f^{\prime}(x)}{f(x)}=\frac{d}{x}$. Integrate both sides to obtain $\ln (f(x))=d \ln x+C$, or $f(x)=c x^{d} . \quad f(1)=2$ implies that $c=2$, and $f^{\prime}(1)=c d(1)^{d-1}=6$ implies $d=3$. Therefore, $f(x)=\mathbf{2} \mathbf{x}^{\mathbf{3}}$.
18. Let $x=\log _{c} a$ and $y=\log _{c} b$. Then $2\left(\frac{1}{x}-\frac{1}{y}\right)=\frac{3}{x+y}$. Clearing the fractions yields $2 y(x+y)-$ $2 x(x+y)=3 x y, 2 y^{2}-3 x y-2 x^{2}=0(2 y+x)(y-2 x)=0$. Therefore, we have $2 \log _{c} b=-\log _{c} a$ (not possible since $a>1$ and $b>1$) or $\log _{c} b=2 \log _{c} a$. Therefore, $\log _{a} b=\frac{\log _{c} b}{\log _{c} a}=\mathbf{2}$
19. If k is the location of the maximum value of f, then we must have $f(k) \geq f(k+1)$ and $f(k) \geq$ $f(k-1$), or (since $f(k)>0$ for all $k) \frac{f(k)}{f(k+1)} \geq 1$ and $\frac{f(k)}{f(k-1)} \geq 1$. The first inequality yields $\frac{\binom{2013}{k}\left(\frac{1}{6}\right)^{k}\left(\frac{5}{6}\right)^{2013-k}}{\binom{2013}{k+1}\left(\frac{1}{6}\right)^{k+1}\left(\frac{5}{6}\right)^{2012-k}} \geq 1$, which simplifies to $\frac{5(k+1)}{2013-k} \geq 1$ which is true when $k \geq \frac{2008}{6}=334 \frac{2}{3}$. In like manner, the second inequality simplies to $\frac{2014-k}{5 k} \geq 1$, which is true when $k \leq \frac{2014}{6}=335 \frac{2}{3}$. Therefore, f is maximized when $k=\mathbf{3 3 5}$.
