## Solutions to EF Exam Texas A&M High School Math Contest 16 November, 2013

- 1. Let n be the number of baseball cards Paul started with. He gave his third friend  $n \frac{1}{2}n \frac{1}{3} \cdot \frac{1}{2}n = 12$  cards, so 6n 3n n = 72, or n = 36 cards.
- 2. The remainder is the same as when  $3^{2013}$  is divided by 10. The sequence of numbers  $3^n|10$  is  $\{3, 9, 7, 1, 3, 9\cdots\}$ , so  $2013^{2013}|10 = 3^{2013}|10 = 3^1|10 = \mathbf{3}$ .
- 3. Let x and y be the numbers. Then xy = 12, and  $\frac{x^3 y^3}{(x y)^3} = \frac{x^2 + xy + y^2}{x^2 2xy + y^2} = \frac{x^2 + 12 + y^2}{x^2 24 + y^2} = 19$ . Clearing the fractions yields  $18x^2 + 18y^2 = 12 + 19(24)$ , or  $x^2 + y^2 = 26$ . Adding 2xy = 24 to both sides yields  $(x + y)^2 = 50$ , or  $x + y = 5\sqrt{2}$ .
- 4. Since  $\triangle ABC$  is an equilateral triangle,  $\triangle ACE$  is a 30-60-90 triangle. Further,  $m \angle BCF = 120^{\circ}$ , so  $\triangle OCE$  and  $\triangle OCF$  are also 30-60-90 triangles which are congruent to  $\triangle ACE$ . Therefore,  $OF = AE = 3\sqrt{3}$ .
- 5. Extend segments  $\overline{TA}$  and  $\overline{UM}$  until they intersect at point X. Since  $\angle AMX = \angle UAX$ ,  $\triangle AMX \sim \triangle UAX$ , so  $\frac{MX}{AX} = \frac{AM}{UA} = \frac{5}{10}$ , or AX = 2MX. From right triangle AMX,  $MX^2 + (2MX)^2 = 5^2$ , or  $MX = \sqrt{5}$  and  $AX = 2\sqrt{5}$ . Since  $\frac{AX}{UX} = \frac{5}{10}$  as well, we have  $UX = 2AX = 4\sqrt{5}$ . Therefore,  $UM = UX - MX = 3\sqrt{5}$ .
- 6. Let *r* and *s* be the roots of p(x). Then  $r + s = -\frac{1}{2}$  and  $rs = -\frac{13}{2}$ . The sum and product of the roots of q(x) must be  $\frac{1}{r} + \frac{1}{s} = \frac{r+s}{rs} = \frac{1}{13}$  and  $\frac{1}{r} \cdot \frac{1}{s} = -\frac{2}{13}$ . Therefore,  $q(x) = x^2 + \frac{1}{13}x \frac{2}{13} = 13x^2 + x 2$ .
- 7. Let z and w be the two numbers. Since  $z^2 = w$  and  $w^2 = z$ , we must have  $z^4 = z$ , or  $z(z-1)(z^2+z+1) = 0$ . If z = 0, w = 0 and the numbers are not distinct. Similarly, if z = 1, w = 1 and again the numbers are not distinct. Therefore, we must have  $z^2 + z + 1 = 0$ , or, from the quadratic formula:  $z = \frac{-1 \pm \sqrt{1-4}}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ . But  $w^4 = w$  as well, so we also have  $w = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ . Then  $z w = \sqrt{3}i$  or  $-\sqrt{3}i$ , so  $|z w| = \sqrt{3}$ .
- 8.  $\tan(3\theta) = \cot(4\theta) = \tan\left(\frac{\pi}{2} 4\theta\right)$ . Thus,  $3\theta = n\pi + \left(\frac{\pi}{2} 4\theta\right)$ , or  $\theta = \frac{2n\pi + \pi}{14}$ . Therefore, the smallest positive solution is  $\theta = \frac{\pi}{14}$ .
- 9.  $\tan(54^{\circ})(\cos(54^{\circ}) + \cos(162^{\circ}) = \sin(54^{\circ}) + \frac{\sin(54^{\circ})\cos(162^{\circ})}{\cos(54^{\circ})} = \sin(54^{\circ}) + \frac{\sin(216^{\circ}) \sin(108^{\circ})}{2\cos(54^{\circ})} = \sin(54^{\circ}) \frac{\sin(36^{\circ})}{2\cos(54^{\circ})} \frac{2\sin(54^{\circ})\cos(54^{\circ})}{2\cos(54^{\circ})} = -\frac{\cos(54^{\circ})}{2\cos(54^{\circ})} = -\frac{1}{2}.$
- 10. Let a be the x-coordinate of the point of tangency. Then  $m = f'(a) = 3a^2$ , and the equation of the tangent line is  $y = a^3 + 3a^2(x-a)$ . This line intersects  $y = x^3$  when  $a^3 + 3a^2x 3a^3 = x^3$ , or  $x^3 3a^2x + 2a^2 = 0$ . Using the fact that the line is tangent at x = a, we can factor the left as  $(x-a)^2(x+2a) = 0$ , so the line intersect f at x = -2a. Therefore, the slope of the tangent line at the point is  $3(-2a)^2 = 12a^2 = 4\mathbf{m}$ .

11. By letting 
$$u = 2x$$
, we have  $\int_0^2 f(2x) dx = \frac{1}{2} \int_0^4 f(u) du = \frac{1}{2} (6+12) = 9$ .

12. 
$$g'(x) = e^{-x}f'(x) - e^{-x}f(x)$$
.  $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 3x^2 + 3xh + h^2 + 2 = 3x^2 + 2$   
and  $f(x) = x^3 + 2x + f(0) = x^3 + 2x + 1$ . Therefore,  $g'(3) = e^{-3}(29) - e^{-3}(34) = -5e^{-3}$ .

- 13.  $f(x) = 1 + x x^2 x^3 + x^4 + x^5 x^6 x^7 + \dots = (1 x^2 + x^4 x^6 + x^8 \dots) + (x x^3 + x^5 x^7 + x^9 + \dots)$ . Since the two expressions are convergent geometric series, their sum is  $\frac{1}{1 + x^2} + \frac{x}{1 + x^2} = \frac{1 + x}{1 + x^2}$ .
- 14. For x > 0,  $\sec(\arctan(x)) = \sqrt{\tan^2(\arctan(x)) + 1} = \sqrt{x^2 + 1}$ , so  $x_2 = \sqrt{2}$ ,  $x_3 = \sqrt{3}$ ,  $\cdots x_{2013} = \sqrt{2013}$ .
- 15. Using algebra and calculus, we can show that  $C_1$  and  $C_2$  intersect in the point  $Q\left(\frac{r^2}{2}, \frac{r}{2}\sqrt{4-r^2}\right)$ and the equation of the line through P and Q is  $y = \frac{\sqrt{4-r^2}-2}{r}x+r$ . Therefore, the *x*-intercept

is 
$$a = -\frac{r}{\sqrt{4-r^2}-2} = \sqrt{4-r^2}+2$$
, so  $\lim_{r \to 0^+} a = 4$ .

Alternately, we can find the limit geometrically using the figure below, defining R to be the desired x-intercept :



 $\angle PQS, \angle OQT$ , and  $\angle SQR$  are all right angles (first 2 subtend diameters; the last is complementary to the first), so  $\angle OQS = \angle TQR$ . Further, using appropriate right triangles we see that  $\angle OSQ = \angle TRQ = 90 - \angle OPQ$ , so  $\triangle SOQ \sim \triangle RTQ$ . But  $\triangle SOQ$  is isosceles; therefore  $\triangle RTQ$  is also isosceles and QT = TR. As  $r \to 0^+$ , point Qapproaches the origin, so  $QT \to OT = 2$  and  $TR \to 2$ . Therefore,  $OR \to 4$ , so  $a \to 4$ .

16. Define  $f(t) = \int_0^1 \frac{\ln(tx+1)}{x^2+1} dx$ . Then f(0) = 0, f(1) =our desired solution, and  $f'(t) = \int_0^1 \frac{x}{(tx+1)(x^2+1)} dx$ . Using partial fractions, we obtain  $f'(t) = \frac{1}{t^2+1} \int_0^1 \left(\frac{-t}{tx+1} + \frac{x+t}{x^2+1}\right) dx$  $= \frac{1}{t^2+1} (-\ln(tx+1) + \frac{1}{2}\ln(x^2+1) + t \arctan x|_{x=0}^{x=1} = \frac{1}{t^2+1} (-\ln(t+1) + \frac{1}{2}\ln 2 + \frac{\pi t}{4}$ . Integrate both sides from 0 to t:  $f(t) - f(0) = \frac{1}{2}\ln 2 \arctan t + \frac{\pi}{8}\ln(t^2+1) - \int_0^t \frac{\ln(x+1)}{x^2+1} dx$ . Since the last term on the right is f(t), we have  $f(t) = \frac{1}{4}\ln 2 \arctan t + \frac{\pi}{16}\ln(t^2+1)$ . Therefore,  $f(1) = \frac{\pi \ln 2}{8}$  17. Since  $f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$ , we also have  $f'(x) = f'\left(\frac{a}{\frac{a}{x}}\right) = \frac{a}{f\left(\frac{a}{x}\right)} = \frac{a}{xf\left(\frac{a}{x}\right)}$ . Differentiate

both sides to yield  $f''(x) = -\frac{a}{x^2 f\left(\frac{a}{x}\right)} + \frac{a^2 f'\left(\frac{a}{x}\right)}{x^3 \left(f\left(\frac{a}{x}\right)\right)^2}$ . Use the first two equations to sub-

stitute for  $f\left(\frac{a}{x}\right)$  and  $f'\left(\frac{a}{x}\right)$  to yield  $f''(x) = -\frac{f'(x)}{x} + \frac{(f'(x))^2}{f(x)}$ . Clear the fractions and the right hand side to obtain  $xf(x)f''(x) + f'(x)f(x) - x(f'(x))^2 = 0$ . Divide by  $(f(x))^2$ :  $\frac{xf(x)f''(x) + f'(x)f(x) - x(f'(x))^2}{(f(x))^2} = 0, \text{ or } \frac{f(x)(xf''(x) + f'(x)) - f'(x) \cdot xf'(x)}{(f(x))^2} = 0.$  Since

the left side is the derivative of  $\frac{xf'(x)}{f(x)}$ , this expression must be a constant (call it d). Then  $\frac{f'(x)}{f(x)} = \frac{d}{x}$ . Integrate both sides to obtain  $\ln(f(x)) = d\ln x + C$ , or  $f(x) = cx^d$ . f(1) = 2 implies that c = 2, and  $f'(1) = cd(1)^{d-1} = 6$  implies d = 3. Therefore,  $f(x) = 2x^3$ .

- 18. Let  $x = \log_c a$  and  $y = \log_c b$ . Then  $2\left(\frac{1}{x} \frac{1}{y}\right) = \frac{3}{x+y}$ . Clearing the fractions yields 2y(x+y) 2x(x+y) = 3xy,  $2y^2 3xy 2x^2 = 0$  (2y+x)(y-2x) = 0. Therefore, we have  $2\log_c b = -\log_c a$  (not possible since a > 1 and b > 1) or  $\log_c b = 2\log_c a$ . Therefore,  $\log_a b = \frac{\log_c b}{\log_c a} = 2$
- 19. If k is the location of the maximum value of f, then we must have  $f(k) \ge f(k+1)$  and  $f(k) \ge f(k-1)$ , or (since f(k) > 0 for all k)  $\frac{f(k)}{f(k+1)} \ge 1$  and  $\frac{f(k)}{f(k-1)} \ge 1$ . The first inequality yields  $\frac{\binom{2013}{k}\left(\frac{1}{6}\right)^k\left(\frac{5}{6}\right)^{2013-k}}{\binom{2013}{k+1}\left(\frac{1}{6}\right)^{k+1}\left(\frac{5}{6}\right)^{2012-k}} \ge 1$ , which simplifies to  $\frac{5(k+1)}{2013-k} \ge 1$  which is true when  $k \ge \frac{2008}{6} = 334\frac{2}{3}$ . In like manner, the second inequality simplies to  $\frac{2014-k}{5k} \ge 1$ , which is true when  $k \le \frac{2014}{6} = 335\frac{2}{3}$ . Therefore, f is maximized when k = 335.